
Parallelizing Ant Colony Optimization

via

Area of Expertise Learning

THESIS

Adrian A. de Freitas, Second Lieutenant, USAF

AFIT/GCS/ENG/07-15

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/07-15

Parallelizing Ant Colony Optimization

via

Area of Expertise Learning

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Adrian A. de Freitas, B.S.C.S.

Second Lieutenant, USAF

September 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/07-15

Parallelizing Ant Colony Optimization

via

Area of Expertise Learning

Adrian A. de Freitas, B.S.C.S.

Second Lieutenant, USAF

Approved:

Maj Christopher B. Mayer, PhD
(Chairman)

date

Dr. Gilbert L. Peterson (Member) date

Dr. Gary B. Lamont (Member) date

AFIT/GCS/ENG/07-15

Abstract

Ant colony optimization algorithms have long been touted as providing an effec-

tive and efficient means of generating high quality solutions to NP-hard optimization

problems. Unfortunately, while the structure of the algorithm is easy to parallelize,

the nature and amount of communication required for parallel execution has meant

that parallel implementations developed suffer from decreased solution quality, slower

runtime performance, or both. This thesis explores a new strategy for ant colony

parallelization that involves Area of Expertise (AOE) learning. The AOE concept

is based on the idea that individual agents tend to gain knowledge of different ar-

eas of the search space when left to their own devices. After developing a sense of

their own expertness on a portion of the problem domain, agents share information

and incorporate knowledge from other agents without having to experience it first-

hand. This thesis shows that when incorporated within parallel ACO and applied to

multi-objective environments such as a gridworld, the use of AOE learning can be an

effective and efficient means of coordinating the efforts of multiple ant colony agents

working in tandem, resulting in increased performance.

Based on the success of the AOE/ACO combination in gridworld, a similar

configuration is applied to the single objective traveling salesman problem. Yet while

it was hoped that AOE learning would allow for a fast and beneficial sharing of

knowledge between colonies, this goal was not achieved, despite the efforts detailed

within. The reason for this lack of performance is due to the nature of the TSP,

whose single objective landscape discourages colonies from learning unique portions

of the search space. Without this specialization, AOE was found to make parallel ACO

faster than the use of a single large colony but less efficient than multiple independent

colonies.

iv

Acknowledgements

I would like to thank Major Mayer for putting up with me and making sure that I

stayed on track, and my family for constantly encouraging me to try my best. Finally,

I would like to thank my pets for reminding me that when you don’t have anything

else to say, a cat on the keyboard can at least get you a few more pages.

Adrian A. de Freitas

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

I. Introduction . 1
1.1 Motivation . 1
1.2 Research Objectives . 3

1.3 Main Contributions . 3
1.4 Thesis Outline . 3

II. Background . 5

2.1 Traveling Salesman Problem 5

2.2 Gridworld Problem . 7
2.3 Ant Colony Optimization 10

2.4 ACO Parallelization Strategies 17

2.4.1 Number of Processing Units 18

2.4.2 Network Topology 19

2.5 Synchronization Strategies 24

2.5.1 Determining what Information to Share 25

2.5.2 Determining How to Incorporate Shared Informa-
tion . 27

2.5.3 Determining When to Synchronize 29

2.5.4 Final Thoughts 31

2.6 Area of Expertise Learning 31

2.6.1 Determination of Self-Expertness 33

2.6.2 Parzen Classification 34
2.6.3 Performing Synchronization 36

III. Methodology . 39

3.1 Overview . 39
3.2 Design of Algorithms . 41

3.2.1 ACS-TSP . 41
3.2.2 ACS-GRIDWORLD 44

3.3 Parallelization of ACS 46
3.4 Incorporation of AOE Learning within ACS 48

3.5 Closing Remarks . 51

vi

Page

IV. Results and Analysis . 56

4.1 Experimental Setup . 56

4.2 Parzen Classifier Efficiency 60

4.2.1 Runtime Performance 60
4.2.2 Parzen Classifier Accuracy 62

4.3 Impact of ACO with AOE Learning in Gridworld 65

4.3.1 Self-Determination of Expertness 65

4.3.2 Determining the Expertness of Others 68

4.3.3 Sharing Expert Information 70

4.3.4 Performance . 73
4.3.5 Closing Remarks 77

4.4 Impact of ACO with AOE Learning in the TSP 77

4.4.1 Single Versus Multiple Time Step Synchronization 78

4.4.2 Performance . 80
4.4.3 Application of AOE to Large TSP Problems . . 87

4.5 Determining when to Synchronize 90

4.5.1 Closing Remarks 93

V. Conclusion . 95
5.1 Contributions and Achievements 95
5.2 Future Work . 99

Bibliography . 101

vii

List of Figures
Figure Page

2.1. A Sample Traveling Salesman Problem 5

2.2. A Sample Gridworld Problem 8

2.3. Ant Colony Optimization Example: Part One 12

2.4. Ant Colony Optimization Example: Part Two 13

2.5. Ant Colony Optimization Example: Part Three 13

2.6. Visualization of the General Parallel ACO Strategy 18

2.7. ACO Master/Worker Hierarchical Network Topology 19

2.8. Depiction of Various Network Topologies 21

2.9. Example Gridworld Problem with Agents 32

2.10. Visit Table . 32

2.11. AOEs of Two Agents through Self-Determination 33

2.12. AOE Synchronization Decision Chart 36

2.13. AOE of Two Agents After Synchronization 37

3.1. Master Worker Overview . 40

3.2. High-Level Depiction of the AOE Learning Process 40

3.3. Detailed View of the Master/Worker Network Layout 47

3.4. Low-Level Depiction of the AOE Learning Process 49

4.1. Imanipour Benchmark . 58

4.2. Starting Locations for Each Colony 66

4.3. AOE as Determined through Self-Assessment (ACS-GRIDWORLD:

25 Time Steps) . 67

4.4. AOE as Determined through Self-Assessment (Q-Learning) . . 67

4.5. AOE as Determined through Self-Assessment (ACS-GRIDWORLD:

5 Time Steps) . 67

4.6. Determination of Others’ Expertise (ACS-GRIDWORLD) . . . 69

4.7. Determination of Others’ Expertise (Q-Learning) 69

viii

Figure Page

4.8. Pheromone Concentrations of Colonies 1, 2, and 3 71

4.9. Optimal Policy for the Imanipour Benchmark 72

4.10. AOEs of Colonies After Synchronization 72

4.11. Comparison of Policies Before and After Synchronization . . . 73

4.12. Area of Expertise of a Single ACS-GRIDWORLD Colony . . . 74

4.13. Pheromone Concentrations of a Single ACS-GRIDWORLD Colony 75

4.14. Comparison of Policies Formed through AOE Learning 75

4.15. Combined Pheromone Policy of Three ACS-GRIDWORLD Colonies

Synchronized Just Before Overlapping of AOE Occurs 76

4.16. Ratio of Expert to Nonexpert States 92

ix

List of Tables
Table Page

4.1. Test Configuration . 59

4.2. Parzen Classifier Training Time 60

4.3. Best Parzen Window Sizes . 61

4.4. Hypercube Sizes Used in this Chapter 61

4.5. Average Parzen Classifier Accuracy (Total) 63

4.6. Average Parzen Classifier Accuracy (Expert Only) 63

4.7. Average Parzen Classifier Accuracy (Nonexpert Only) 64

4.8. Runtime of Parallel vs. Standalone ACS-GRIDWORLD 73

4.9. Single vs. Multiple Time Step Synchronization: Ulysses22 . . . 78

4.10. Single vs. Multiple Time Step Synchronization: ATT48 79

4.11. Single vs. Multiple Time Step Synchronization: ST70 79

4.12. ACS-TSP Solution Quality: Ulysses22 81

4.13. ACS-TSP Solution Quality: ATT48 81

4.14. ACS-TSP Solution Quality: Eil51 81

4.15. ACS-TSP Solution Quality: Berlin52 82

4.16. ACS-TSP Solution Quality: ST70 82

4.17. ACS-TSP Runtime Performance: Ulysses22 83

4.18. ACS-TSP Runtime Performance: ATT48 84

4.19. ACS-TSP Runtime Performance: Eil51 84

4.20. ACS-TSP Runtime Performance: Berlin52 85

4.21. ACS-TSP Runtime Performance: ST70 85

4.22. ACS-TSP Performance: Eil101 87

4.23. ACS-TSP Performance: PR264 88

4.24. ACS-TSP Performance: PCB442 89

x

Parallelizing Ant Colony Optimization

via

Area of Expertise Learning

I. Introduction

In many ways, combinatorial optimization problems are the Achilles’ heel of

modern-day computers. Although they are intuitively simple in concept, the sheer

dimensionality of these problems prevent brute force approaches from generating so-

lutions for all but the most trivial instances. Ant colony optimization (ACO) is a

simple metaheuristic that can effectively solve problems in these domains. Unfortu-

nately, while the technique is capable of solving optimization problems that are too

large for complete enumeration methods to handle, ACO is also prone to slowdown as

the size of the problem increases. In order to speed up ACO, many research attempts

have focused on parallelizing the algorithm. This thesis looks at a novel parallelization

technique for ACO in which multiple colonies work on the same problem, specialize

in different aspects of it, and then collaborate with one another in order to develop a

more thorough understanding of the search space. This “area of expertise” technique

is applied to two problem domains: gridworld and the traveling salesman problem.

1.1 Motivation

ACO is a metaheuristic that generates high quality solutions to many types of

NP-hard problems ranging from the traveling salesman problem to the multidimen-

sional knapsack problem. First proposed by Dorigo and Gambardella [16], ant colony

algorithms get their name from their ability to approximate the swarm-like behav-

ior of their real-life counterparts. By themselves, ants are relatively simple agents

that are capable of performing extremely limited tasks. As part of a larger colony,

however, the primitive actions of multiple ants combine to form impressively complex

behavior. Because ants in an ACO colony learn from each other as they explore the

1

search space, this approach generates solutions that are either equivalent or close to

those found by a complete enumeration approach. More importantly, though, is the

fact that these near-optimal solutions can be found in a fraction of the time.

Given its focus on multiple, independent ant agents, an obvious extension of

the ant colony framework is to implement the algorithm in a parallel environment.

One of the main attractions of such an approach is that it allows for the concurrent

sharing of knowledge between multiple colonies working in tandem. This in theory

should allow each colony to learn more about the search space than would be possible

otherwise. Unfortunately, while the parallelization of ACO has been the subject of

intense study [6], the results of recent research efforts indicate that little progress

has been made. Although the structure of ant colony algorithms easily facilitates a

division of labor between various processing units, there has yet to be a means of

sharing, or synchronizing knowledge between multiple colonies in a manner that is

beneficial to all. In fact, up to this writing, every implementation of cooperative

learning within ACO has resulted in either increased computational complexity and

decreased solution quality, or both. Thus, until significant progress is made, the ant

colony framework is relegated to a single processor environment.

Considering the difficulties encountered thus far in parallelizing ACO, it is clear

that a fundamental rethinking of the synchronization step is necessary. The pur-

pose of this thesis is to examine a novel approach to knowledge sharing known as

Area of Expertise (AOE) learning [1]. Unlike other cooperative learning techniques,

AOE focuses on identifying areas of the search space where each agent possess ex-

pert knowledge. By sharing these expert regions with one another, each colony is

then able to develop a more comprehensive understanding of the search space than it

could on its own. Although AOE learning has been successfully utilized in the field of

robotics [1], the approach has never been combined into the ACO framework. Thus,

this thesis presents the first step in what could prove to be an exciting new direction

for ant colony research, as it examines whether or not collaboration between multiple

colonies working in tandem overcome the inherent problems of parallelizing ACO.

2

1.2 Research Objectives

The overall objectives to be accomplished in this thesis are 1) to develop a means

of integrating AOE learning within the parallel ACO framework 2) to demonstrate

the proof-of-concept of AOE learning in parallel ACO using the gridworld domain,

and 3) to study the effects of AOE learning in parallel ACO when applied to the

traveling salesman problem.

1.3 Main Contributions

The main contributions this thesis are:

1. The creation of a new methodology that incorporates AOE learning within

parallel ACO;

2. Identifying that the effectiveness of AOE learning largely varies depending upon

when agents share expert knowledge with one another. An analysis of this

technique on gridworld revealed that the best time to share is just before agents’

AOEs overlap. When examined within the context of the TSP, however, failed

to reveal a similar set of readily identifiable conditions;

3. The discovery that the combination of AOE learning and parallel ACO in multi-

objective environments leads to increased runtime performance and solution

quality.

1.4 Thesis Outline

The following chapters of the thesis are organized as follows. Chapter II provides

background information including a formulation of the TSP and gridworld problems, a

survey of recent attempts at parallelizing ACO, and a description of the AOE learning

strategy. This is followed by a discussion of the methodology used to incorporate AOE

learning within ACO in Chapter III. Chapter IV provides an analysis of the impact

of AOE learning when applied to a multi-objective gridworld environment as well as

the single objective traveling salesman problem. Finally, Chapter V concludes with

3

a discussion of all pertinent information obtained from this study, as well as grounds

for future research.

4

II. Background

This chapter provides an overview of related work pertaining to the effectiveness of

parallel ant colony algorithms at solving NP-hard optimization problems. It begins

with a discussion of the traveling salesman and gridworld problem domains, both

of which are well known NP-hard problems and easily mapped to the ant colony

framework. Following this is a description of the ant colony optimization technique

and the results of various attempts at parallelizing the algorithm. Finally, the area of

expertise strategy is introduced as a means of facilitating cooperative learning between

multiple ant colonies running in parallel.

2.1 Traveling Salesman Problem

The traveling salesman problem (TSP) is often considered to be the de facto

NP-hard optimization problem. First formulated in the 1930s, TSP has since been

studied in great detail [21] and was one of the first problem domains successfully

mapped to the ant colony framework [15]. Figure 2.1 provides a visual representation

of a sample TSP instance.

The TSP is naturally expressed as a weighted graph structure. Nodes in the

graph correspond to locations (i.e. cities) while edges denote a path from one node

to the other. A cost, oftentimes equated to distance, is associated with each edge.

For the purposes of simplicity, Figure 2.1 only illustrates paths from each city to its

nearest neighbors. Typically, though, it is assumed that the graph is fully connected

Figure 2.1: A Sample Traveling Salesman Problem.

5

and non-directed, meaning that it is possible to travel from one node to any other

and vice versa.

Given a graph similar to the one described above, the TSP can best be described

as finding the cheapest round-trip route, or Hamiltonian Circuit, which visits each

node exactly once [2]. In order to provide a more formal description of this problem

statement, let eij be an edge that connects node i to j. Also, let a cost, cij, be

associated with traveling from node i to j along eij. If a Hamiltonian Circuit, S,

consists of a set of edges, then the objective of the TSP is to satisfy the following

criteria:

MIN S :
∑
eij∈S

cij (2.1)

Looking back at Figure 2.1, the circuit {Tacoma, Colorado Springs, Dayton, San

Antonio, Ceres, Tacoma} is the Hamiltonian Circuit that provides a minimal cost.

Although the TSP is intuitively simple from a conceptual point of view, it has

been shown to be NP-hard [24]. This is because the process of determining the

optimal Hamiltonian Circuit requires examining every possible combination of round-

trip routes either explicitly or implicitly. When the number of nodes is relatively

small, an exhaustive search is a feasible means of determining the most efficient route

that visits each node exactly once. Yet each time that the number of nodes in the

graph, n, increases by one, the search space of the problem domain increases by a

factor of (n+1); this is because each possible Hamiltonian Circuit in the previous

graph must now incorporate the new node, which (assuming a fully connected graph)

can be inserted in (n+1) possible locations. Thus, the complexity of the search space

is bounded from above by O(n!), making the TSP intractable once the number of

nodes reaches a sufficient size [21].

The TSP is easily mapped to a number of real-world problems. One of the most

obvious mappings of TSP is in terms of transportation, whether it is in minimizing

the distance traveled by aircraft between various airports or in plotting the optimum

routes for parcel pickups. There are, however, a number of counterintuitive uses of

6

the TSP in real-world applications. In the semiconductor manufacturing industry,

TSP solvers provide a means of developing efficient pathways between components

on an integrated circuit. Moreover, TSP solvers have also been successfully applied

in genome research as a means of constructing high quality radiation hybrid maps in

the shortest possible time frame. TSP solutions have even been used in operations

research in order to plot the most efficient pattern of punching holes in a printed

circuit board or other objects, thus resulting in reduced manufacturing costs [4].

Considering the diversity of these applications, it is clear that there is a need

for developing an effective and efficient means of solving TSP’s of various sizes. Un-

fortunately, even the best branch-and-bound strategies are unable to efficiently de-

termine an optimal solution for TSP instances containing more than several hundred

nodes [34]. Consequently, a major focus of research is in the development of meta-

heuristic approaches that provide good or even optimal solutions in polynomial time.

Ant colony optimization, which is described later in this chapter, is one of these

metaheuristics, and has been shown to be highly effective for this particular problem

domain.

2.2 Gridworld Problem

Like the TSP, gridworld is an NP-hard combinatorial optimization problem that

is also easily mapped to an ant colony framework. Commonly referred to within the

context of machine learning, this problem domain can be directly applied to a variety

of tasks where the objective is to learn the optimal path to a predefined goal [28].

The gridworld problem is defined within the context of a discrete landscape like

the one presented in Figure 2.2. This landscape is divided into three parts: open

locations (white) that are traversable, obstacles (black) that are not traversable, and

goals (green, with “G” label). Traveling between locations in the world is limited

to discrete actions in the north, south, east, and west directions, with the obvious

restriction that one cannot move off of the world or travel through an obstacle. Fur-

thermore, the cost of moving from one location to another can vary depending on

7

Figure 2.2: A Sample Gridworld Problem.

the direction (i.e. it costs more to travel to a particular location from the north than

from the south, etc). For this thesis, however, costs are kept uniform.

Given an arbitrary starting location in an open location, the objective of the

gridworld problem is to find the most efficient path to a goal location. In order to

provide a more formal explanation, let a gridworld be described as a coordinate plane

with R rows and C columns. Specific locations in the gridworld, then, can be denoted

as (x ∈ C, y ∈ R). A solution to the gridworld problem is considered to be a path P

which consists of moves mij from location i to j such that the path originates from

the starting location, ends at a goal, and only goes through open locations. Assuming

that a cost of cij is associated with each mij, the objective function for the gridworld

problem can be defined as the following:

MIN P :
∑

mij∈P

cij (2.2)

Based on the example provided in figure 2.2, the paths {(1, 1), (2, 1), (3, 1), (4, 1),

(5, 1), (6, 1), (6, 2), (6, 3), (5, 3)}, {(1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 4),

(5, 4), (5, 3)}, and {(1, 1), (1, 2), (1, 3), (1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (5, 3)}
all represent the shortest path from starting location (1,1) to the closest goal, as they

are all of length nine.

8

A common extension of the gridworld problem is to determine the optimal

location from every open location to a goal. This modified objective can be achieved

through the repeated use of equation 2.2 on every open location, and is formally

expressed as:

∀x∈C∀y∈R

(x, y) is open ⇒ MIN P :

∑
mij∈P

cij

 (2.3)

The gridworld problem is considered to be difficult to solve due to the sheer

number of possible paths that exist from any starting location. As mentioned in

the previous section, determining an optimal solution requires that all other possible

solutions be examined either implicitly or explicitly. Unfortunately, like the TSP, the

number of possible solutions/paths in the gridworld increases exponentially as the size

of the problem increases linearly. For the purposes of complexity analysis, consider a

gridworld with no obstacles and exactly one goal location. Given a sufficiently large

landscape, there are four possible paths from which to choose from for a given location

(one for each direction). Based on this observation, the total number of paths can then

be approximated as 4l, where l is the length of the path and the 4 is the number of

actions that can be made from each location. Thus, the search space of the gridworld

problem is bounded from above by order O(4R×C) for each starting location, assuming

that no path needs to visit the same location twice and can therefore be no longer

than the total number of locations in the problem (since there must be at least one

goal in the environment). By extension, the search space of the entire world is then

bounded by order O(R× C×4R×C). Although this complexity is reduced somewhat

by assuming uniform distances between locations and the presence of walls, the fact

remains that the search space for the gridworld problem is non-polynomial.

Although Equation 2.2 is similar to the objective function of TSP presented in

Equation 2.1, there are several key differences between the two problem domains that

clearly distinguish one from the other. Unlike in the TSP, where solution construction

9

is a simple matter of choosing n edges that form a Hamiltonian Circuit, generating

a solution for the gridworld problem is a relatively uncertain process that involves

moving to various locations until a goal is eventually encountered. Furthermore, be-

cause the TSP can be represented as a fully connected graph, it is possible to ensure

that there is never a situation in which a non-starting node must be visited twice

within the same solution. Unfortunately, while visiting the same location twice is un-

desirable in gridworld, prohibiting repeated visits is not feasible due to the possibility

of becoming stuck in a dead end (due to an inability to see more than one grid cell

ahead) and having to backtrack. The most significant difference between the TSP

and gridworld, however, is that the former describes a single goal environment while

the latter can contain multiple goals. Although there may be several Hamiltonian

Circuits in a TSP instance whose total cost satisfies Equation 2.1, the problem as a

whole is aimed towards the single goal of finding an optimum circuit cost. This con-

trasts sharply with a gridworld domain where paths terminate at just one of possibly

many different but equally valid goal locations.

Thus, while the TSP and gridworld problems may share some similarities, the

differences between the two are significant to the point where focusing on one or the

other prevents a thorough examination of the types of optimization problems which

are known to exist. For this reason, the research conducted in this thesis is considered

within the context of both problem domains.

2.3 Ant Colony Optimization

As previously mentioned, NP-hard problems such as TSP and gridworld are

difficult to solve to optimality due to the sheer number of candidate solutions that

must be considered either explicitly or implicitly. Unfortunately, the inability of

brute force approaches to solve anything larger than trivial problems has fueled the

development of faster algorithms that can produce good results without the need for

an exhaustive search. This quest for improved efficiency has caused many researchers

to turn their focus to biological systems such as insect swarms for inspiration, as

10

nature has demonstrated an innate ability to devise solutions to problems using simple

algorithms/rules.

Ant Colony Optimization (ACO) is perhaps one of the most successful integra-

tions of a natural system to an algorithmic framework. First proposed by Dorigo and

Gambardella [16], ACO solves problems by mimicking how real ants instinctually dis-

cover the optimum path from their colony to a food source. Rather than examining

the entirety of a search space, ACO algorithms are characterized by their inclination to

explore only those areas where they believe an optimum solution is likely to appear.

Doing so, however, necessitates a tradeoff between optimality and speed. Because

ACO is a metaheuristic approach, one cannot guarantee that the solutions produced

by the algorithm are optimal. Yet according to studies conducted by Dorigo and

others, ACO algorithms have been shown to generate solutions that are comparable,

if not equivalent, to those generated by their brute-force counterparts [6]. Consider-

ing that these algorithms also run in polynomial time and can therefore be used on

larger problem sets than is possible using a deterministic strategy, it is clear that the

potential of ACO is simply too great to ignore.

The ACO framework is based off of the idea that multiple, relatively simple

“ant” agents can solve complex problems through the cooperative sharing of informa-

tion. The key to this collaborative process is a pheromone trail (τ) which simulates

the chemical trails produced by real ants to mark paths of interest. As shown in

Figure 2.3, the behavior of ACO during the first several time steps is largely driven

by heuristic cues due to the lack of pheromone trails. As solutions are uncovered,

however, the most promising ones are identified and their corresponding paths are

reinforced. These trails then play a role in influencing future time steps, as ants

consider paths with higher pheromones to be more desirable (Figure 2.4). The ac-

cumulation and decay of pheromones trails over time steps directly corresponds to a

colony’s knowledge of the problem, as they indicate the parts of the search space the

ant colony believes are worth examining and which should be ignored. Given enough

time, the creation of new pheromone trails will eventually come to a halt as the ants

11

Figure 2.3: Example of ACO in the TSP During the First Time Step. Due to the
lack of pheromone trails, the ant constructs a solution by picking the shortest edge
from each node.

converge on a final solution and continue to reinforce the same path repeatedly (Fig-

ure 2.5). The amount of time can vary depending upon the specific implementation

(a general algorithm is provided for the reader’s reference in Algorithm 1), but it is

not uncommon for ACO algorithms to run for hundreds or even thousands of time

steps before achieving convergence [6].

Algorithm 1 Ant Colony Optimization (Generic) [18]

1: Initialize Pheromone Values
2: for Number of Time Steps do
3: for Each Ant in Colony do
4: Place Ant in Random Starting Location
5: while Solution Not Yet Created do
6: Add to Partial Solution
7: for All Pheromone Values Corresponding to Solution do
8: /* Local Update: Decrease the Value by a Percentage (ρ) */
9: τsolution = τsolution × ρ

10: for All Pheromone Values do
11: /* Evaporation: Decrease the Value by a Certain Percentage (ρ) */
12: τ = τ × ρ
13: for All Pheromone Values Corresponding to Good Solutions do
14: /* Global Update: Increase the Pheromone Value (∆τ) */
15: τsolution = τsolution + ∆τ

12

Figure 2.4: Example of ACO in the TSP Prior to Convergence. Note that the
pheromone trails from Figure 2.3 are present and guide future ants’ decisions. To
encourage exploration, though, ants sometimes make random choices. In this case,
doing so has led to the discovery of a higher quality solution.

Figure 2.5: Example of ACO in the TSP at Convergence. At this point, the ants
have settled on a final solution, and reinforce it constantly. All other pheromone trails
fade away since they are no longer being used.

13

As stated in [6], there are four components that are inherent to all ant colony

algorithms. In order to provide a more formal description of the ACO framework,

each will now be discussed in detail.

1. Heuristic Desirability. Although ACO’s long term behavior is strongly influ-

enced by the presence of pheromone trails, the algorithm also relies on heuristic

cues in order to make well-informed decisions. Heuristic information is especially

useful during the first several iterations of an ACO algorithm, as the colony is

unable to rely upon pheromone trails in order to guide the ants towards promis-

ing paths. Yet even in later iterations, research has shown that heuristics can

continue to be used to great effect [5]. In order to strike a balance between

the importance of pheromone trails and heuristic cues, ACO makes use of the

parameters α and β. These parameters represent the relative weighting of im-

portance between pheromone and heuristic values, respectively, and are used to

influence how much influence either has in the decision making process. Since

they tend to evaluate problem specific information, no general form of a heuris-

tic can be provided. Some common examples for the TSP, however, include the

nearest neighbor, minimum spanning tree, and inverse distance heuristics. Each

of these are described in [5] and have been used to great effect.

2. Transition Rule. In order to promote a healthy exploration of the search space,

ACO algorithms rely on a stochastic transition rule that guides ants from one

state (i.e. a node in the TSP, or a grid cell location in gridworld) o the next.

This rule, as generalized in Equation 2.4, utilizes a random value q and threshold

value q0 (both between 0 and 1, inclusively) to determine whether an ant should

make a decision greedily or probabilistically.

NextState =

GreedyChoice, if q ≤ q0

ProbabilisticChoice, Otherwise
(2.4)

14

By relying on probabilities instead of a purely deterministic approach, the tran-

sition rule gives ants the opportunity to exploit immediately promising (greedy)

paths while still allowing them to occasionally explore new parts of the search

space. This in turn helps the algorithm avoid the pitfall of becoming stuck in

local optima.

3. Constraint Satisfaction. A typical characteristic of ACO calls for each ant to

generate a feasible solution at the end of every time step. To enforce this char-

acteristic, a constraint satisfaction policy is utilized which ensures that ACO is

capable of providing a viable solution regardless of the number of time steps that

have elapsed. Obviously, developing effective constraints for an ACO algorithm

requires a thorough knowledge of the problem domain for which the algorithm is

being mapped to. In the case of the TSP, the constraints are designed such that

no ant travels along the same edge twice or visits a non-starting node more than

once per time step. Likewise, the constraints for gridworld include checking to

make sure that ants never travel past the edge of the landscape or occupy a

grid cell that contains an obstacle. Depending upon the problem being solved,

developing an effective set of constraints can be a difficult process. Adding to

this challenge, though, is ensuring that the constraint function does not simul-

taneously restrict the behavior of the ants to the point where they are unable to

effectively explore the search space (i.e. not allowing ants to enter an enclosed

area in a gridworld problem for fear of backtracking).

4. Pheromone Update Rule. Developing an effective and efficient policy in regards

to managing pheromone trails is perhaps the single most important aspect of

any ACO algorithm. For this reason, it is important to choose a pheromone

update rule that effectively captures an ant colony’s knowledge of the search

space. Although a review of the current literature indicates that there are a

number of different pheromone update rules, most can be categorized into one

of three types. The global pheromone update rule (line 15 of Algorithm 1) is the

most common and is used at the end of time steps in order to reinforce paths

15

that lead to the most promising solutions. This is typically done by adding an

amount of pheromone proportional to the quality of the solution (In the TSP,

the reciprocal of the circuit length is used as the amount of pheromone). In

the local pheromone update rule (line 9 of Algorithm 1), pheromones along a

path are reduced whenever an ant travels on it. By doing so, it is hoped that

other ants working later in the time step are less likely to choose this path,

thus resulting in a wider exploration of the search space. Finally, through the

evaporation update rule (line 12 of Algorithm 1), pheromones along all paths

are reduced at the end of a time step, with the rationale being that doing so

will cause the ants to ignore less promising branches of the solution space. A

cursory examination of ACO algorithms such as the Ant Colony System [15],

MAX-MIN Ant System [29], and Win or Learn Fast Ant System [7] indicates

that while the global update rule is technically the only rule that is required,

incorporating all three can lead to increased overall performance.

Since the behavior of ACO is highly influenced by the presence or absence of

pheromone trails, its behavior can be naturally divided into two phases [22].

• In the exploration phase, ants are willing to examine various portions of the

search space regardless as to whether or not that portion is known to contain

high quality solutions. This phase generally occurs during the first few time

steps, as the relative lack of pheromone trails allows the ants to consider a wide

range of paths from which to choose from.

• In the exploitation stage, ants become extremely sensitive to pheromones and

only make small deviations from the paths laid out in previous time steps. Not

surprisingly, this phase occurs well after exploration, when pheromone trails are

abundantly present and highly concentrated.

While a cursory glance at these two phases might suggest that one dominates the

other, the truth of the matter is that ACO equally depends on both exploration and

exploitation in order to produce high quality solutions. Without a sufficient amount

16

of exploration, an ant colony is unable to determine the portions of the search space

likely contain good solutions. Furthermore, without sufficient use of the exploitation

phase, the colony does not closely examine the solutions uncovered by exploration in

order to find even better ones. Thus, in order maximize the effectiveness of the ACO

technique, it is clear that a balance must be maintained between the amount of time

spent searching for new solutions and the amount of time spent refining them.

Although this thesis is primarily concerned with the application of ACO algo-

rithms in regards to the TSP and gridworld problem domains, it should be noted that

flavors of ACO have been created to solve a wide variety of theoretical and real-world

applications. A review of the current literature indicates that the ACO framework has

been applied to a number of classical problems such as the quadratic assignment prob-

lem [31], multidimensional knapsack problem [12], and graph coloring problem [11].

In addition, a number of real-world applications, such as job-scheduling [35], vehicle

routing [14], and adaptive network routing [3] have also directly mapped to the ACO.

In each case, the use of an ACO algorithm was found to result in solutions that were

as good or better than a robust, state-of-the-art algorithm, thus demonstrating the

validity of this technique on both a theoretical and practical level.

2.4 ACO Parallelization Strategies

The ACO algorithm lends itself for use in a parallel environment. Under this par-

allel framework, a single large colony is broken into a set of smaller colonies (consisting

of one or more ants), each of which are asked to generate solutions independently of

the other. At predefined intervals, the results (i.e. solutions, pheromone values, etc)

of these individual runs are then gathered and shared with one another through the

use of a specialized synchronization mechanism. The use of multiple small colonies

as opposed to a single large one makes it possible to take advantage of the stochastic

nature of the ACO technique. If left to their own devices, each colony explores a

different portion of the search space. Synchronizing then allows each colony to learn

from the experiences gathered by others without having to explicitly gain this infor-

17

Figure 2.6: Visualization of the General Parallel ACO Strategy

mation for itself. Thus, through the use of parallelism, each processing unit is able

to learn a larger portion of the search space than it does on its own, which in turn

should improve its chances of generating high quality solutions in a shorter number

of time steps. Figure 2.6 provides an overview of the parallel ACO strategy.

While the overarching concept of parallel ACO is promising, there are a number

of unanswered questions regarding how to maximize its effectiveness. What follows

in this section is a discussion of the key issues involved in the parallelization of ACO,

and the various approaches that have been utilized in order to address them.

2.4.1 Number of Processing Units. One of the key aspects of parallelizing

ACO concerns the number of processing units that are needed to yield good per-

formance. While intuition might suggest that “more is better” experimental results

indicate that this is not always the case. According to [10], the optimal number of

processing units for a parallel ACO algorithm depends largely upon the size of the

problem. Given a large TSP problem, utilizing significant numbers of processing units

(i.e. 5 to 10) have been shown to be beneficial due to the fact that each colony tends

to focus on a different part of the search space. As a result, each colony has a unique

set of experiences which it can share with the rest of the network via synchronization.

When given a small problem, however, each colony tends to explore a similar por-

tion of the search space. In this case, having multiple processing units actually hurts

performance, as colonies waste time sharing redundant information to one another.

The results of Cioni’s study are profound, as it suggests that parallelization is not a

18

Figure 2.7: ACO Master/Worker Hierarchical Network Topology.

panacea [10]. While it is true that ACO stands to benefit from parallelization, this

study indicates that these benefits only arise when the environment is large enough

to take advantage of multiple colonies. Without such an environment, having many

small colonies is no better than having a single large one.

2.4.2 Network Topology. At the heart of every parallel ACO implementation

is a network structure that facilitates communication between processing units. An

examination of the current literature indicates that a variety of network topologies

have been successfully incorporated into the existing ACO framework [8]. Unfortu-

nately, while there are obvious tradeoffs to each layout, the impact of these topologies

on parallel ACO has yet to yield a clear-cut winner.

One of the most straightforward network topologies, involves the use of a hier-

archical organization of processing units [32]. This organization, illustrated in Figure

2.7, divides the available processing units into a set of workers (representing either a

colony or an ant) led by a single master. During runtime, the master is responsible for

keeping track of the best solution found and for updating the pheromone matrix at the

end of each time step. Workers, on the other hand, are only responsible for creating

a solution when directed to by the master. Note that this topology utilizes a shared

19

memory architecture whereby the master stores information about the problem being

solved and workers ask for that information as needed. Because each worker relies on

the master to maintain pheromone trails, the advantage of having multiple workers

is focused more on decreasing the amount of time that it takes to construct solutions

during a time step than it is in sharing information between colonies.

The master/worker topology has been augmented in [13] and [30]. In the former,

computational efficiency is improved through the incorporation of efficient memory

usage and algorithm optimizations. In the latter, a multi-layer hierarchy consisting of

several lower level masters reporting to a single overarching master is proposed and

implemented. Regardless of these enhancements, though, the fundamental limita-

tions of the hierarchical topology remain. Because workers depend on the master (or

masters, in the case of [30]) in order to update the pheromone trails, synchronization

must occur at the end of every time step. According to [10], this constant need for in-

formation sharing between colonies causes communication time to dominate runtime

performance. Another shortcoming inherent to the hierarchical topology is the fact

that workers must be given the most recent pheromone values at the start of each

time step. This in turn leads to significant network overhead due to transmission

delays and the quantity of data being transferred, further decreasing efficiency. Most

importantly, because there is only a single pheromone matrix, the master/worker

topology fails to take advantage of the unique experiences that are encountered by

each worker over the course of a trial. As a result, rather than gaining more knowledge

in a shorter period of time, as is one of the key motivations for parallelizing ACO,

the results produced by this topology are strikingly similar to those generated by a

nonparallel ACO algorithm. In fact, the only notable difference is that the parallel

implementation is able to take advantage of the additional computational resources

of its multiple workers to produce these results faster. When one considers the time

penalties associated with the synchronization process, however, it is unclear as to how

significant this advantage actually is.

20

Figure 2.8: Depiction of Various Network Topologies (Assuming 8 Colonies).

Given the inherent performance bottleneck associated with the centralized mas-

ter/worker scheme, some researchers have turned their attention to the creation of

decentralized network topologies. Rather than maintaining a single pheromone ma-

trix, decentralized topologies allow for the creation of multi-colony systems where

each colony maintains its own set of pheromone trails. This in turn allows each

colony to operate independently of one another until synchronization occurs, signifi-

cantly reducing the overhead of frequent communications between colonies. A survey

of decentralized topologies provided by [18] and [23] lists a variety of decentralized

networks that have used in parallel ACO. Each of these networks are described below

and are visualized in Figure 2.8:

• Fully Connected. In a fully connected network topology, each ant colony has

a direct line of communication with every other colony in the network. Con-

sequently, this topology represents the most flexible network design possible.

Typically, the use of a fully connected topology requires that a single colony be

21

responsible for evaluating the performance of all other colonies in order to deter-

mine which ones have performed the best/worst; the results of this evaluation is

then broadcasted to all other colonies in order to facilitate the synchronization

process. This colony is designated the master of the network, although this

moniker is quite different from the master/worker framework described earlier

since the role is only used during synchronization and can technically be fulfilled

by any colony.

• Ring. In a ring topology, each colony is connected to exactly two neighbors.

The resulting topology restricts communications by ensuring that information

can only be sent in a circular direction. The two most common forms of ring

networks utilize either a directed or undirected communication scheme. In the

directed ring network [23], colonies can only transmit information to one neigh-

bor and receive it from the other. This contrasts with a non-directed ring

network [18], where a colony can both send and receive information from both

of its neighbors.

• Hypercube. The hypercube topology, as described by [18], can only be imple-

mented when the number of colonies (n) can be expressed as n = 2k, where k

is an positive integer. If each colony is identified with a unique binary string,

then a connection between two colonies will exist if the IDs of the two differ by

only a single bit. The resulting network, therefore, is k -dimensional.

• Random. In a random network, connections between colonies are arbitrarily

placed and are modified at the end of each synchronization step. As a result,

this network is the most unpredictable network topology described thus far.

• Parallel Independent. Although technically not a network, the idea of simply

running an isolated instance of ACO on each processor is proposed in [23] as

an alternate means of organizing a set of ant colonies. The justification behind

a parallel independent “network” is based on the fact that ACO is a stochas-

tic search process. As a result, some runs of the algorithm will undoubtedly

22

produce better results than others. By prohibiting communication between in-

dividual colonies, the parallel independent strategy proposes that high quality

solutions can be generated without the need for synchronization. Needless to

say, this topography eliminates much of the overhead associated with sending

and receiving data across multiple processing units, since the only data that

needs to be transmitted occurs at the beginning (i.e. the problem to be solved)

and end (i.e. the best solution found) of a run.

According to studies conducted by [23] and [25], the choice of network topology

appears to have a significant impact on the performance of parallel ACO. In terms of

execution time, communication heavy topologies such as the fully connected network

suffer from the large amounts of identical data that is transferred and processed by

each colony at each synchronization step. In order to minimize this time penalty, the

Middendorf, Reishle, and Schmeck suggest the use of a directed ring network, which

benefits from the fact that each colony can only communicate with its immediate

neighbors [25]. Yet while these studies prove that communication latencies can be re-

duced through the smart selection of network topology, none of the layouts presented

in this discussion match the efficiency of a parallel independent network. As noted

in [23], parallel independent networks have a distinct runtime advantage since they

completely omit the synchronization process. Fortunately, while runtime performance

is important, the motivating factor behind parallelizing ACO is focused less on exe-

cution time and more on solution quality. It is impossible to entirely eliminate the

time penalty associated with synchronization without removing the communication

step altogether. Consequently, the best that can be expected from a true parallel

ACO implementation is a topology that facilitates improved results in a comparable

amount of time.

Yet while the promise of increasing solution quality through the use of an ef-

fective network layout makes the study of various topologies well worth the time and

effort, the results of [23] and [25]’s studies indicate that the benefits of such research

have yet to be realized. In addition to its faster runtime performance, the use of

23

parallel independent runs results in higher quality solutions than is achievable using

any of the aforementioned network topographies. Furthermore, when examining the

exploration of a parallel ACO algorithm, the results of [23] demonstrate that ants

often converge prematurely when they are connected to one another over a network;

parallel independent colonies, on the other hand, were shown in the same study to

explore a larger portion of the search space in the same amount of time. Certainly,

these findings discredit the idea of parallelizing ACO altogether. However, it is still

early to make such a determination for certain.

Although there does appear to be a relationship between network topography

and performance, the nature of this relationship is obscured by a number of other

factors which likely play a more key role. These factors include

1. Determining what information should be shared between colonies

2. Determining how to effectively merge that information (i.e. the synchronization

strategy used)

3. Determining the frequency of communication between colonies

Each of these factors undoubtedly play a crucial role in parallel ACO with regards

of runtime performance and solution quality. Unfortunately, as is discussed in the

following sections, researchers (including this one) are just beginning to look at these

issues.

2.5 Synchronization Strategies

Up to this point, the concept of synchronization has been largely abstracted for

the sake of simplicity. The importance of the synchronization step to parallel ACO,

however, necessitates a closer examination of this process. As illustrated in [18],

developing an effective synchronization strategy requires careful consideration as to

how information can efficiently and effectively be shared between multiple colonies.

What follows in this section is a review of recent work on these issues.

24

2.5.1 Determining what Information to Share. Although the idea of syn-

chronization sounds good in theory, determining exactly what information is worth

sharing remains a largely unresolved issue. Given that ant colonies store knowledge

in the form of pheromone trails, one obvious approach is to simply allow each colony

to share its entire pheromone matrix. In [20], this strategy was tested on a variety

of network topologies. Unfortunately, the authors discovered that the sheer size of

the pheromone matrix results in an unacceptable communication overhead, especially

when the frequency of synchronization is high and the problem being solved is large.

Based on this observation, researchers have turned their attention away from the di-

rect sharing of the pheromone matrix, electing instead to focus on the exchange of

smaller and more meaningful packets of data between colonies.

2.5.1.1 Migrants. One possibly useful piece of knowledge worth shar-

ing between colonies is the solutions (whether they be tours as in TSP or paths to a

goal as in gridworld) themselves. Using this approach, each colony keeps track of its

solutions and determines which ones, known as migrants, are worthy of being shared

during synchronization; typically, the best solution (i.e. shortest distance path in

TSP) is chosen. These migrants are then used to reinforce other colonies’ pheromone

tables as determined by ACO’s global update rule. The key strength of this approach

is that a migrant can be represented in a fraction of the space needed to represent

an entire pheromone table. As a result, sharing migrants minimizes amount of data

being transferred while simultaneously ensuring that the data remains meaningful.

Manfrin, Birattari, Stutzle, and Dorigo propose a global solution exchange

whereby each colony receives a copy of the best migrant discovered thus far over

the entire network [23]. Another study, conducted by Middendorf et. al., calls for the

sharing of the best solution discovered by each colony [25]. Finally, in [18], a strategy

calling for each colony to only share and receive solutions from its nearest neighbors

is proposed.

25

Although the results of these three studies are not directly compared to one

another, an examination of their respective findings still provides some meaningful

information. As observed in [23], sharing the global best solution causes parallel

ACO to stagnate due to the fact that each colony updates its pheromones based on

the same solution. This in turn causes each colonies’ pheromone trails to closely

resemble one another, which causes them to explore and exploit the same portion of

the search space. Likewise, the sharing of the local best solutions between colonies

has similar effects, although they are diminished somewhat due to the larger set of

data that is provided to each colony. The most significant findings, according to

Middendorf, result from the use of the third strategy. Since migrants are only shared

between immediate neighbors via this approach, each colony receives a different set

of migrants during the synchronization step. This allows the colonies to maintain

fairly diverse pheromone matrices, which consequently leads to increased exploration

and improved solution quality over other information sharing approaches.

2.5.1.2 Pheromone Vectors. Although the exchange of migrants is by

far the most popular approach to sharing information, another equally valid strategy

calls for an exchange of important pheromone values between colonies. To accomplish

this, a strategy proposed in [9] uses a pheromone vector to transmit key pheromone

values (i.e. the highest values in the matrix) between colonies. While this strategy is

shown to be an effective means of running parallel ACO for the set covering problem,

the approach was also found to have the same limitations as the migrant strategy.

Given too large a pheromone vector, each colony’s tables converged to a similar con-

figuration, resulting in decreased exploration of the search space. On the other hand,

too small a vector and the benefits of synchronization are outweighed by the increased

computational complexity involved in communicating these values.

The findings obtained thus far indicate that determining what information to

exchange between colonies necessitates a balance between two extremes. Since the

point of exchanging information is to improve the knowledge base of each colony,

26

the information to be shared must be meaningful. At the same time, though, the

selected information must also prevent each colony from focusing on the same part

of the search space. As of this writing, the best information sharing strategies are

those that give each colony a unique but equally valid set of data for use during

synchronization [25]. It should be noted, however, that even the best information

sharing strategies to date have yet to result in solutions that are of higher quality

than those obtained through parallel independent runs. Thus, more research needs

to be done in this area.

2.5.2 Determining How to Incorporate Shared Information. In addition to

deciding what information should be shared, another important question in parallel

ACO is determining what each colony should do with this information once it is re-

ceived. Yet while this section describes a number of possible approaches, no dominant

policy has emerged.

A survey of the current literature indicates that there are three common strate-

gies used to merge shared information in parallel ACO. The first, and most popular

approach is an elitist strategy [25]. The elitist approach requires each colony to eval-

uate the quality of information shared by others through the use of a fitness function

(i.e. the length of a tour in the TSP). Only the highest scoring (or elite) pieces of

information are incorporated into that colony’s pheromone matrix. Although this

strategy intuitively makes sense, the results of [23] indicates that this approach has a

significant shortcoming. Since each colony has access to the same set of shared infor-

mation, the elitist strategy causes each colony to reinforce their pheromone tables in

the exact same way. This in turn causes the entire network to converge on the same

portion of the search space, which ultimately defeats the purpose of running ACO

in parallel. In order to address this problem, the authors of [25] suggest giving each

colony a slightly different set of information at each synchronization step. Another

approach, proposed by [10], calls for the use of different pheromone update rules for

each colony. This ensures that no two colonies update their pheromone matrices in

27

the exact same way, even if these updates are based on the same set of information.

Unfortunately, while both approaches are shown improve the performance of the eli-

tist strategy, the quality of solutions generated through this approach are still found

to be inferior to those generated through parallel independent runs.

In contrast to an elitist approach, where only the best pieces of information

are used, an alternative synchronization strategy calls for the use of every piece of

shared information [18]. This approach maximizes the amount of knowledge that

can possibly be gained through synchronization. Unfortunately, because this method

does not utilize a fitness function, each colony is updating its pheromone trails based

on nothing more than blind faith that its sister colonies are all sharing meaningful

information. Given the stochastic nature of ACO, though, this is highly unlikely

in the average case [18]. As shown by Middendorf, utilizing every piece of shared

knowledge at synchronization causes the best performing colonies to contaminate

their pheromone matrices with the information provided by the worst. The end result,

then, is both decreased runtime performance (due to the fact that more information

is being utilized at each synchronization step) and solution quality throughout the

entire network.

Given the limitations of incorporating either too much or too little information

into a colony’s knowledge base, the authors of [33] propose a hybrid approach that

attempts to achieve the best of both worlds. Similar to weighted strategy sharing [28],

this approach calls for colonies (or “clans”) to assign a weight value w (0 ≤ w ≤ 1)

to the relative importance of information (in the form of pheromone values) provided

by other colonies. This weighting, then, is used to update each colony’s pheromone

matrix as:

τnew = τshared × (1− w) + τcurrent × w. (2.5)

Through this weighted averaging of pheromone values, the clan approach allows

each colony to utilize the information shared by the entire network while simultane-

28

ously diluting the contaminating effects of bad colonies. Unfortunately, because w

is a tunable parameter value, maximizing the effectiveness of this approach requires

some trial and error. In an effort to eliminate this step, a similar weighted strategy

algorithm is proposed where the value of w varies for each colony depending upon

the quality of solutions found by the remainder of the network [17]. In both studies,

though, the impact of this technique remains the same. Through an analysis of this

technique in the TSP, both authors discovered that while solution quality can improve

by as much as 0.5% through the use of this approach, it also reduced quality by the

same amount once the size of the problem became sufficiently large (i.e. more than

100 nodes). As a result, it is unclear as to whether or not the benefits of this weighted

approach offsets the computational resources required to implement it within parallel

ACO.

2.5.3 Determining When to Synchronize. Given the emphasis placed on

determining what to synchronize and how to synchronize it, it is easy to overlook the

importance of determining when to invoke the synchronization process. According

to recent studies, this aspect plays a crucial role in parallel ACO. As noted in [8],

the rate at which colonies exchange information can have a significant impact on

runtime efficiency. Furthermore, in terms of solution quality, the results of [23], [25],

and [30] indicate that the performance of ACO is also influenced by when information

is shared. Considering that these two areas of performance are of key importance in

this thesis, it is clear that this issue deserves further consideration.

A survey of recent research efforts indicates that there are two timing strategies,

or synchronization schedules, utilized in parallel ACO.

• The first of these schedules calls for the use of synchronization at the end of

every time step. Assuming a flawless information sharing strategy, synchro-

nizing once per time step provides a high rate of information sharing between

colonies, which consequently should lead to higher quality solutions in a shorter

amount of time. However, the use of this schedule has not yet produced these

29

results. Because synchronization requires communicating information to one

or more colonies, there is a significant runtime penalty that is incurred due to

network transmission delays. In fact, given a large enough network, it is shown

in that a colony spends more time transmitting information than it does solving

the problem when using this schedule [23]. In addition, when looking at the

findings from the studies listed above, not one has found evidence suggesting

that synchronizing every time step actually leads to improved solutions. On the

contrary, solution quality was actually found to decrease by up to 8% through

this approach [23].

• Rather than swap information at the end of every time step, an alternative ap-

proach calls for synchronization after a fixed number of time steps have elapsed.

With a large enough interval (i.e. 5 time steps), this asynchronous schedule

can be shown to significantly improve runtime performance [8]. Furthermore,

in terms of solution quality, the use of synchronization sparingly also benefits

parallel ACO, as it allows colonies to diversify their exploration/exploitation

of the search space [25]. Yet even though the performance of parallel ACO

is greatly improved through the use of an asynchronous schedule, the results

of [23] indicate that using this strategy still produces lower quality than those

generated with parallel independent runs. Thus, while this schedule appears to

be a step in the right direction, there is still much room for improvement.

Although the research to date has concentrated on scheduling synchronization

at the end of each time step or at predefined intervals, it should be noted that there are

a number of alternative approaches which have been suggested throughout the years.

In [18], the authors propose a schedule that differs for each colony, thus resulting

in a wider variety of information that is exchanged at synchronization. Another

approach proposes a more dynamic synchronization schedule in which colonies only

share information once they have made a significant discovery [25]. To this date, both

schedules have yet to be examined as exhaustively as the ones described above. Yet

30

considering that the current methods have yet to produce the desired performance, it

is difficult to imagine this being the case for much longer.

2.5.4 Final Thoughts. Through this discussion, it is clear that the paral-

lelization of ACO is an ongoing area of research. While some strides have been made

in determining an effective number of colonies to use as well as how these colonies

interact with one another across a network, other aspects of this process, including

what to synchronize (Section 2.5.1), how to synchronize (Section 2.5.2), and when to

synchronize (Section 2.5.3), have largely eluded research efforts to date. Given this

current state of affairs, the rest of this thesis is focused on the study of the Area of Ex-

pertise learning strategy. The AOE technique represents a potentially revolutionary

means of parallelizing ACO for three reasons. First, it proposes a novel and arguably

more precise means of determining what information is worth sharing. Secondly, it

utilizes a far more sensible means of determining how this information should be

shared between colonies. Most importantly, by varying the time step in which this

method is invoked, it is possible to exploit the findings of the previous section and

determine when the most opportune time to synchronize is. In each respect, the AOE

approach provides a fresh new perspective to the idea of parallelizing ACO. As a

result, it is an approach that warrants further study.

2.6 Area of Expertise Learning

The Area of Expertise (AOE) learning strategy [1] is a novel means of sharing

knowledge between multiple agents working in tandem. Cooperative learning strate-

gies to date have centered around the idea of giving agents information and forcing

them to incorporate it into their knowledge base. In a dramatic paradigm shift, the

AOE technique calls on agents to develop a sense of how well they have learned the

problem space. This knowledge, then, constitutes their “expertness.” Through syn-

chronization, each agent evaluates the expertise of others and adds their knowledge

31

Figure 2.9: Example Gridworld Problem with Agents.

Figure 2.10: Example Visit Table for the Upper Left Agent (a) and Lower Right
Agent (b).

to its own wherever it feels that it is not an expert. By doing so, each agent is able

to augment its knowledge base rather than overwrite it.

In order to provide a detailed explanation of the AOE strategy, this section

provides a pedagogical example involving a simple gridworld environment (Figure

2.9). For the purposes of simplicity, only two agents are considered, although the

AOE approach can technically accommodate any number of agents so long as at there

are at least two. Furthermore, each agent starts at opposing ends of the gridworld in

order to ensure a healthy exploration of the entire landscape.

With this setup in place, each major phase of the AOE process can be summa-

rized as follows:

32

Figure 2.11: Areas of Expertise of Two Agents through Self-Determination

1. Each agent examines its own knowledge base in order to develop a sense of its

expertness in the search space.

2. Agents train a classifier in order to identify the expertness of others.

3. Agents share and incorporate other agents’ knowledge into their knowledge base.

Each of these steps are now discussed in detail.

2.6.1 Determination of Self-Expertness. The first step in the AOE process

calls for each agent to determine where it possesses expert knowledge. To accomplish

this task, each agent possesses a data structure known as a visit table [1]. The visit

table keeps track of the number of times an agent finds itself in a particular state; in

the gridworld example provided in Figure 2.9, this idea of state directly corresponds

to a grid cell location. Over the course of a trial, agents traverse the search space and

update their visit tables accordingly. The end result of this table after several time

steps is shown in Figure 2.10.

The idea of expertness in the AOE strategy is centered on the idea that agents

become experts in states that they frequently visit. By taking the median of a visit

table, the authors of [1] define an expertness threshold which an agent can use in order

to determine its AOE (shown in Figure 2.11). In Figure 2.10, the visit table values

are purposefully designed such that the median of the table (3 for the leftmost agent

and 2 for the rightmost) is nonzero for both agents. Had the median of the visit table

33

been 0, though, an acceptable alternative would be to set the threshold to 1 in order

to prevent the agent from considering itself expert throughout the entire search space.

Since the visit table approach does not take solution quality into account, an

obvious criticism of AOE is that it is arbitrary in its determination of expertness. It

is important to remember, however, that the term expertness does not always have a

positive connotation. According to [1], an agent is an expert when it can accurately

predict the effects of its actions from a given state. At times, the agent learns what

actions lead to positive consequences (i.e. knowing in gridworld where the nearest

goal is from a particular cell). Undoubtedly, though, there are times when the agent

only knows what actions will lead to negative consequences (i.e. knowing in the TSP

that traveling along a certain edge is too costly to be part of an optimal solution).

In both cases, the agent has experience in these locations that may prove useful to

others. Thus, in both cases, the agent is considered to have expert knowledge.

2.6.2 Parzen Classification. Once each agent has determined its AOE, it

must then evaluate the expertness of others. Unfortunately, this task is complicated

since each agent develops its own perspective as to what constitutes expertness. As a

result, determining the expertise of other agents requires looking at their knowledge

base from this unique perspective. In [1], the authors propose the use of a Parzen clas-

sifier which is specifically trained to recognize expert knowledge from a given agent’s

perspective. Parzen classification is a nonparametric technique which approximates

a function through the use of density calculations [27]. Given a set of data points

residing in n-dimensional space and a query point, q, the Parzen technique works by

constructing an n-dimensional hypercube about q and sampling the number of data

points which reside within it; classifications, then, are based upon the number of data

points which reside within this hypercube.

Within the context of [1], the data points for Parzen classification correspond

to the knowledge base of the agent that is using it. The contents of this knowledge

base are already designated expert or nonexpert based upon the contents of its cor-

34

responding visit table, and are used by the classifier to learn what an agent considers

expert knowledge. Query points, on the other hand, consist of those pieces of knowl-

edge (obtained from other agents) that need to be evaluated for expertness. Since

knowledge in [1] is one-dimensional (i.e. Q-table values), and classifications requires

a binary “expert” or “nonexpert” response, the Parzen classification technique for

evaluating expertness is relatively simple, and is described in detail by Algorithm 2.

Algorithm 2 Parzen Classification of Expertness [1]

1: for A given query point q do
2: Retrieve the agent’s knowledge base and determine its expertness (as per Sec-

tion 2.6.1).
3: Define a hypercube of length h and volume hn in n-D space centered about the

point that represents q
4: Determine

kc = the number of expert samples (Ne total) inside the hypercube
kn = the number of nonexpert samples (Nn total) inside the hypercube

5: Calculate
Pe = 1

hn × ke

Ne

Pn = 1
hn × kn

Nn

6: if Pe ≥ Pn then
7: Return Expert
8: else
9: Return Nonexpert

An analysis of Parzen classification indicates that there are two potential short-

comings to this approach. Since a typical gridworld problem may only consist of

hundreds of locations, the Parzen classifier described above must learn to distinguish

between expert and nonexpert states from an unusually small training set. This in

turn raises serious doubts as to whether or not the classifier can make accurate pre-

dictions of expertness. Furthermore, as seen in Algorithm 2, the key to the Parzen

classifier rests in determining the optimal dimensions of the hypercube. If the cube

is too large, then the classifier will believe that the agent has expert information in

nearly every location of the gridworld. When the cube is too small, however, the

classifier will not believe that agents possess any expert knowledge. Given the unde-

sirability of either extreme, the authors of [1] rely on empirical analysis in order to

35

Figure 2.12: AOE Synchronization Decision Chart. Note that this Chart is Followed
by Every Agent for Every Piece of Nonexpert Data in its Knowledge Base.

determine the best hypercube dimensions. Unfortunately, these dimensions only work

for the authors’ Q-table values, and need to be redetermined for other representations

of the knowledge base (which in the case of this thesis takes the form of pheromones).

Despite the concerns listed above, it can be shown that the use of a Parzen

classifier can result in predictions of expertness that are similar and comparable to

those produced by the visit tables. These results, in conjunction with the elegance

and simplicity of the classifier, informally verify the effectiveness of this strategy. As

a result, this thesis also utilizes the Parzen method.

2.6.3 Performing Synchronization. The final step of the AOE strategy calls

for the synchronization of knowledge across multiple agents. To do this, each agent

relies on the decision making process presented in Figure 2.12. For each location

36

Figure 2.13: AOE of Two Agents After Synchronization. Note that Locations with
Two Colors Denote that an Average of Both Agents’ Knowledge was Used.

in the gridworld, the agent determines whether or not it already possesses expert

information. If it does, then the agent makes no change to its knowledge base. When

the agent lacks expert information, however, it evaluates the expertness of other

agents at that particular location (using the Parzen classifier). If other agents’ AOE

include this location, then the agent incorporates the experience of the most expert

agent into its knowledge base. Otherwise, a simple average of each agent’s knowledge

is used to replace the existing value. The synchronization process is complete once

each agent has had a chance to compare its knowledge with others and make changes

as necessary. Assuming a perfect classifier, an example of the knowledge bases of

multiple agents after synchronization is provided in Figure 2.13.

The novelty of the AOE approach stems from the fact that each agent retains

its expert knowledge throughout the course of its lifetime. The purpose of the syn-

chronization step, then, is not to overwrite an agent’s knowledge base, but to simply

augment nonexpert areas with the experience gathered by other agents. By doing

so, it is possible to give each agent a more complete understanding of the search

space, which should help it make more informed decisions as to which portions of the

solution space are worth searching. More importantly, by ensuring that each agent

retains its own expert knowledge, it is possible to ensure that no two agents have the

same knowledge base. This attribute is perhaps the most important advantage of the

37

AOE learning strategy, as different areas of expertise undoubtedly lead each agent to

explore the search space in a slightly different manner. This in turn leads to a wider

exploration which hopefully results in the discovery of higher quality solutions.

Although the AOE strategy has only been implemented in terms of robots, it

does not take a significant stretch of the imagination to envision a similar learning

scheme with regards to parallel ACO. The reason for this is because the agents in [1]

behave similarly to ant colonies, and the use of Q-table values can easily be substitute

with pheromone values [19]. Considering the difficulties encountered thus far in get-

ting parallel ACO to yield quality results, it is clear that the potential of this strategy

is simply too great to pass up. As a result, the main focus of this thesis is in regards

to incorporating AOE learning into the ACO framework.

38

III. Methodology

This chapter describes the methodology used to incorporate Area of Expertise Learn-

ing within the Ant Colony Optimization framework through a bottom-up approach.

Following a general overview, the first step in the design process calls for the exami-

nation of a specific flavor of ACO known as the Ant Colony System (ACS), which has

already been successfully applied to the traveling salesman problem in [15]. Using

this algorithm as a template, an ACS algorithm designed specifically for gridworld

is then created. Afterwards, a description of the modifications needed to parallelize

ACS is provided. Finally, the chapter concludes by showing how the AOE learning

technique can be integrated into parallel ACO.

3.1 Overview

The methodology described in this chapter facilitates the parallelization of ACO

by means of a processor farming model (commonly referred to as a master/worker

hierarchy) implemented on a local area network. Through this approach, a single large

ant colony is partitioned into a predefined number of worker sub-colonies (consisting

of one or more ants) which each reside on a different processing unit. A dedicated

master process, then, oversees the entire network and serves as a central point of

communication. Figure 3.1 provides a visual representation of this topology.

As is typical in a distributed architecture, colonies are purposefully isolated

so that each can operate independently from the rest of the network. In order to

support the use of AOE learning, however, this isolation is interrupted at times to

allow for swapping of expert knowledge. As seen in the UML sequence diagram in

Figure 3.2, inter-colony communications are implemented via a handshaking process

between workers and the master. To initiate this process, each worker transmits

a request message to the master, along with the information it wishes to share (i.e.

pheromone values). Once the master receives a request from the entire network,

it then combines this information via the AOE process and returns a unique set of

39

Figure 3.1: A Description of the Master/Worker Topology Used Throughout this
Chapter. Note that the Arrows Signify Two-Way Communications.

Figure 3.2: High-Level UML Sequence Diagram of the AOE Learning Process.

40

results to each participant. After updating their knowledge bases with these results,

the colonies resume working from where they left off.

Although the methodology described above is intuitively simple, there are nu-

merous aspects of this design which have been intentionally abstracted for ease of

explanation. What follows in this chapter is a detailed discussion of each of these

aspects.

3.2 Design of Algorithms

Figure 3.2 introduces the idea that colonies are responsible for performing some

set amount of work. For the purposes of this thesis, this notion of work takes the

form of an ACO algorithm. This section provides a detailed discussion of the two

ant colony algorithms used in this thesis. The first, ACS-TSP, is well-established

and commonly used throughout the academic community. ACS-GRIDWORLD, on

the other hand, represents a brand-new ant colony algorithm created specifically for

this research. Although these two algorithms are technically different, both share

a number of fundamental similarities in terms of data structures used and overall

behavior. This ensures that any modifications made to one algorithm (as proposed

in the following sections) can be laterally applied to the other as well.

3.2.1 ACS-TSP. The ACS-TSP algorithm, developed by Dorigo et al.

[15], is often regarded as the textbook application of ACO to an NP-hard problem

domain. As illustrated in Algorithm 3, the structure of ACS-TSP can be broken

down into four main phases. In the initialization phase, the time step counter (t) is

set to 0, pheromone values (represented as a matrix, τ) along every edge are set to a

nonzero value (τ0), and ant agents are assigned a starting city/node either randomly

or uniformly. In addition, the algorithm creates a sorted data structure known as

a candidate list (cl) which keeps track of the closest cities available from each node;

this is done as a time-saving measure to prevent the algorithm from having to sort

the set of all edges from each node by cost (c) when determining where to travel

41

to next. While the size of the candidate list is an adjustable parameter, ACS-TSP

strictly enforces that the contents of this list only contain those nodes which the ant

has yet to visit. By doing so, the algorithm ensures that the list only contains those

moves which are legal for the ant to make.

Although the importance of the initialization phase cannot be overstated, the

crux of the ACS-TSP algorithm rests in the exploration and exploitation of the search

space. To accomplish this task, the algorithm relies on a solution construction phase

whereby each ant in the colony is given the opportunity to completely solve the

problem before the next is allowed to proceed. Prior to the start of its turn, each

ant obtains a local copy of the candidate list which it can modify independently from

the rest of the colony. With this list in hand, the ant constructs a solution in the

following manner:

If the city where the ant is located (i) has a nonempty candidate list (cl 6= φ),

the ant generates a random number q between 0 and 1. This random value is

then compared to q0, which is a predefined threshold value. When q is less than

or equal to q0, the ant selects a destination city (j ∈ cl) such that the product of

τα
ij and ηβ

ij (where τij is the pheromone present on the edge between nodes i and j,

ηij = 1
cij

, and α and β are weights that indicate the relative importance of selecting

destinations based off of pheromone values or cost, respectively) is maximized (upper

part of line 16). If, on the other hand, q is larger than q0, the ant picks a destination

city in a stochastic fashion, using the formula described in line 18 of Algorithm 3 to

calculate the probability of traveling to each node; this equation takes into account

the pheromone concentrations (τα
ij) and heuristic desirability of traveling to a node

(ηβ
ij) versus those of any other city that has yet to be visited (contained in the set Jk

i).

In the event that the candidate list is empty, though, the ant simply makes a greedy

choice and selects the node closest to its current location (line 21). Once an ant has

made a decision, it removes the selected node from all candidate lists (cl = cl − j),

updates Jk
i (Jk

i = Jk
i − j), and sets its current location to j (i = j). The entire

42

decision making process is then repeated until a valid solution (consisting of a path

going through all nodes exactly once) is formed [6].

As seen in line 25 of Algorithm 3 (where ρ represents the decay factor), a

local pheromone update phase occurs every time an ant travels from one node to the

next. Instead of serving as a reinforcement mechanism, however, the purpose of this

local update is to decrease the amount of pheromone present along the most recently

traveled path. Since ants are attracted to paths with large pheromone values, local

updates decrease the probability that other ants will travel along the same path. This

in turn encourages a broader exploration of the search space within each time step.

Once each ant has constructed a solution, the algorithm compares each one to

the best known tour (T+) and its length (L+), replacing the two whenever a higher

quality solution has been found by the colony. Following this, the algorithm then

enters a pheromone reinforcement phase where the pheromones along each edge in

T+ are increased according to the equation in line 33. The pheromones along all

edges are then evaporated slightly (decreased) in order to prevent a single pheromone

trail from becoming too overwhelming (line 35). Finally, t is incremented by one

and compared to the maximum number of time steps, tmax. If the two are equal, the

algorithm halts. Otherwise, all ants are placed in new starting locations and a new

time step begins.

According to [6], ACS-TSP has been shown to converge on high quality solutions

in a reasonable number of time steps (i.e. less than 1000). Unfortunately, as is

commonly the case with stochastic search techniques, ACS-TSP’s performance is tied

to its parameter settings. There are no fewer than five parameters (α, β, q0, ρ,

and cl) whose values directly affect the behavior of the algorithm. Yet while an

obvious remedy is to simply tune these parameters to their optimum values, the

results of [24] indicate that the best parameter settings for ACS-TSP vary depending

upon the particular problem being solved. Thus, for the purposes of this thesis,

43

only the parameters described in [15] (detailed in Section 4.1), which are empirically

demonstrated to result in good overall performance, are used.

3.2.2 ACS-GRIDWORLD. The adaptation of ACS to the gridworld prob-

lem domain borrows heavily from the framework provided in Algorithm 3. Due to a

number of fundamental differences between the gridworld and TSP problem domains,

however, several key modifications are required. These modifications are described

below, and the resulting algorithm is provided in Algorithm 4.

During the initialization phase of ACS-GRIDWORLD, each element of the

pheromone matrix is once again assigned a nonzero value of τ0. Instead of rep-

resenting edges as they did in ACS-TSP, though, (i, j) pairs now correspond to row

and column locations (i.e. a single grid cell) within the landscape. The number

of ants used is now left as a parameter value to be arbitrarily decided by the user

(instead of being proportional to the size of the problem as in ACS-TSP), and the

random starting locations assigned to each ant are monitored to ensure that they

do not begin at obstacles or goals (line 5). Due to the fact that an ant can only

move in the four cardinal directions (north, east, south, west) and can visit a location

repeatedly, the use of a candidate list is no longer required.

Following the initialization phase, ACS-GRIDWORLD gives each ant the op-

portunity to construct a path from its starting location to a goal state using the

same one-at-a-time strategy employed in Algorithm 3. To accomplish this task, the

algorithm relies on a simplified solution construction phase whereby each ant either

makes a greedy or probabilistic choice depending upon the values of q and q0 (line

12); this phase is identical to the one utilized in ACS-TSP when the candidate list

is nonempty. Since ants may end up retracing their steps due to backing up after

becoming trapped or by random occurrence, it is impossible to predict how many

moves are needed before an ant reaches a goal location. This is in sharp contrast to

the TSP, where a solution is guaranteed after (n− 1) moves have been made. Thus,

whereas the time steps of ACS-TSP have a constant runtime complexity, the overall

44

speed of ACS-GRIDWORLD can widely fluctuate depending upon how quickly the

ants find a goal. This in turn makes the evaluation of ACS-GRIDWORLD’s runtime

performance more difficult to accurately gauge.

While the disparities between ACS-GRIDWORLD and ACS-TSP have been

minimal so far, the process of updating pheromone trails introduces a dramatic dif-

ference between the two. Although both algorithms utilize the same local update

(line 19) and evaporation rules (line 27), ACS-GRIDWORLD reinforces the solutions

discovered by every ant at the end of each time step (line 21). This is a significant de-

parture from ACS-TSP, where only the best solution discovered thus far is reinforced.

The rationale behind this new reinforcement rule is based on the widely varying ob-

jectives of the two problem domains. Unlike the TSP, where there is only a single

optimal solution (or multiple solutions with the same minimum cost), the “answer”

to a gridworld problem consists of a policy that shows the optimal path from every

open location to a goal. Since there is no way of directly comparing the paths of

two ants when they start at different locations, ACS-GRIDWORLD considers both

of them to be equally valid, and reinforces them accordingly.

By allowing every ant to lay pheromone, ACS-GRIDWORLD is capable of learn-

ing an entire landscape in a relatively short amount of time. Unfortunately, such a

strategy carries with it an increased possibility of suboptimal paths being mistakenly

reinforced. To address this concern, the algorithm relies on two safety mechanisms.

The first is the aforementioned random placement of ants prior to the start of each

time step, which ensures a good coverage of the search space. The second feature

is an enhanced pheromone update rule which removes loops and repeated cells from

each ant’s solution prior to reinforcement. This updated rule, shown in line 22, pre-

vents ants from encouraging repeated visits to non-goal states, since doing so is never

beneficial. Through a combination of these two mechanisms, the risk of converging

on suboptimal solutions in ACS-GRIDWORLD is largely mitigated. As a result, the

algorithm is expected to yield good performance in the average case.

45

3.3 Parallelization of ACS

In their current form, both of the ACS algorithms described in Section 3.2

are self-contained and designed to run on a single processor. As a result, several

modifications are required before either can be utilized in a parallel environment like

the one outlined in Figure 3.1. This section describes the parallelization of ACS-

TSP and ACS-GRIDWORLD via a two-step process. The first step examines the

algorithmic modifications needed to incorporate inter-colony communications within

ACS. This is followed by a discussion of the network topology and communication

model used to coordinate these colonies as they work in tandem.

As illustrated in Algorithm 5 (which provides a generic template which can be

applied to both ACS-TSP and ACS-GRIDWORLD), the parallelization of ACS is

supported through the addition of two segments of code. The first segment, shown

in line 1, is a simple remote-access mechanism that allows the algorithm to be told

which problem to work on by a master process. The second, and more crucial addition

to ACS is a conditional statement that determines when/if a colony should share its

findings with the rest of the network. This statement (line 8) is evaluated at the end

of each time step, and triggers a synchronization request whenever it returns true;

the algorithm then transmits the information that it wishes to share and waits for

a response. Since the optimal conditions for synchronization (pheromone values, a

specific time step, etc) are not yet known, the contents of this conditional statement

are intentionally left vague. For the purposes of this discussion and of the subsequent

chapters, this line is currently set to return true once a predefined time step (or

interval of time steps) has been reached. Through the experimental process, however,

it is hoped that this simple condition can be replaced with one that more accurately

determines the most opportune time to synchronize.

In addition to algorithmic changes, the parallelization of ACS also requires some

consideration as to the “physical” means by which individual colonies interact with

one another. As noted in the overview, the communication model used in this thesis

46

Figure 3.3: Detailed View of the Master/Worker Network Layout.

is a modified master/worker topology similar to the one described in [32]. As is typ-

ical of such a layout, each colony works independently from the rest of the network

and only communicates with its master. Unlike a traditional master/worker layout,

however, the hierarchy (as seen in Figure 3.3) used in this thesis is unique in that

each colony maintains its own pheromone trails. Through the decentralization of the

pheromone matrix, it is possible for each colony to take advantage of the stochastic

nature of ACO. This allows each colony to explore and exploit different candidate

solutions simultaneously. Furthermore, since workers no longer need to query the

master at every time step for the latest pheromone values, this implementation also

benefits from improved runtime performance due to decreased communication over-

head. In its current form, worker colonies remain autonomous throughout much of the

solution construction process and only communicate with the master whenever they

wish to share information. The master, then, assumes the role of the synchronizer by

collecting these requests, processing them, and returning the results of this process to

their rightful owners. This clear delineation of responsibilities is reflected in Figure

3.3.

Through this discussion, it is clear that the parallelization of ACS is a nontrivial

task. It is important to remember, though, that the modifications described in this

47

section are not new, and have been recreated in a variety of studies concerning parallel

ACO (as described in Chapter II). Instead, the novelty of this thesis rests in the

development of the synchronization mechanism, which has been purposely abstracted

up to this point. As a result, the final section of this chapter focuses exclusively on

the AOE learning process, and provides a means of incorporating this new form of

cooperative learning within parallel ACO.

3.4 Incorporation of AOE Learning within ACS

The final step in the design process calls for the precise mapping of AOE learning

into the parallel ACS framework described in Section 3.3. Whenever synchronization

is deemed necessary by an ant colony (line 8 of Algorithm 5), AOE learning is used

to augment that colony’s pheromone matrix with the expert information provided

by others. At this point, it is important to remember that the definition of area of

expertise differs depending upon the problem domain. In gridworld, AOE naturally

corresponds to particular grid cells in the landscape where an agent is considered to

have compelling knowledge. For the TSP, though, AOE can be thought of as the edges

where expert knowledge is contained. While these definitions may differ semantically,

they are equivalent to one another syntactically. This allows for a lateral application

of AOE learning to both problem domains.

The UML sequence diagram provided in Figure 3.4 provides a low-level depiction

of the AOE learning process when applied to parallel ACS. What follows in this section

is a breakdown of this diagram into its fundamental stages:

1. Self Determination of Expert Knowledge. As described in Chapter II, each

colony keeps track of the frequency in which edges or grid cells (depending

upon the problem domain) are visited. This visit table is updated during each

execution of RunTimestep(). Once a synchronization time step has been reached

(assuming that synchronization is triggered by the number of time steps exe-

cuted, as noted in Section 3.3), the algorithm enters the DetermineSelfExpert-

48

Figure 3.4: Low-Level UML Sequence Diagram of the AOE Learning Process in
Parallel ACS.

49

ness() method, where self expertness is determined by taking the median of the

visit table and using it as a threshold value. All edges or grid cells that have

been visited at least this many times (as well as their corresponding pheromone

values) are considered to be expert.

2. Training the Parzen Classifier. The AOE approach calls for each colony to

train a Parzen classifier to evaluate the expertness of other colonies [1]. In order

to do this, each colony uses its own visit table and pheromone matrix values as

training data; only the pheromone values, however, are stored by the classifier.

Determinations of expertness for any arbitrary pheromone value can then be

made via Algorithm 2. As stated in Section 2.6.2, one of the key challenges in

this training process rests in determining the optimum hypercube dimensions

for the classifier. Since both sets of training are one-dimensional, however, this

tuning process can be accomplished via a linear search. For the purposes of

this thesis, the TrainParzenClassifier() method keeps track of the highest and

lowest pheromone values in the training data. The difference between these two

values then represents the maximum allowable dimension of the hypercube. By

decreasing this value and evaluating the accuracy of the resulting classifier, it is

possible to find an approximation of the best Parzen window size. A summary

of this tuning process is provided in Algorithm 6.

3. Synchronizing of Knowledge. Once the previous two steps are complete, each

worker colony transmits its current pheromone matrix and trained classifier

to the master and waits for a response. The master, in turn, augments each

matrix according to the AOE decision process described in Figure 2.12. At the

conclusion of this process, the master sends each worker an updated pheromone

matrix. With this new matrix in hand, the worker then replaces its entire

knowledge base and begins work on the next time step.

The complete pseudocode for parallel ACS with AOE learning is provided in

Algorithm 7 for the sake of completeness. A cursory examination of this code reveals

two interesting points. First and foremost, unlike the other ACS algorithms discussed

50

thus far, Algorithm 7 has been divided into two parts in order to reflect the sepa-

rate but complimentary roles of the master and worker as noted in Figure 3.3. The

second, and perhaps most important characteristic of this pseudocode, however, is

that it does not contain any problem domain specific data/control structures. This

is intentionally done in order to show that methodology described in this chapter is

problem independent. As a result, the general structure of Algorithm 7 can be applied

to both ACS-TSP and ACS-GRIDWORLD, with each case resulting in an ant colony

algorithm that is both parallelized and enhanced with AOE learning.

3.5 Closing Remarks

With the methodology complete, the focus of this thesis moves away from design

and shifts towards evaluating the impact of AOE learning when combined with parallel

ACO. In the following chapter, ACS-GRIDWORLD is used in order to demonstrate

the proof-of-concept of AOE learning within ACO. This is followed by an examination

of AOE in the ACS-TSP algorithm in order to determine how the approach works in a

single objective environment. Note that this second application is of key importance,

as the TSP is more representative of the types of problem domains typically associated

with ACO.

51

Algorithm 3 ACS-TSP Algorithm [6]

1: /* Initialization */
2: for every edge (i, j) do
3: τij = τ0

4: Generate cl for each city
5: for k = 1 to total number of cities do
6: Place ant k on a randomly chosen city
7: Let T+ be the shortest tour found and L+ be its length
8: /* Main Loop */
9: for t = 1 to tmax do

10: for k = 1 to total number of cities do
11: /*Solution Construction*/
12: Get a local copy of all candidate lists
13: Build tour tk by doing the following n− 1 times:
14: if the cl is not empty then
15: Choose the next available city, j ∈ Jk

i in the candidate list as follows:
16:

j =

{
argmaxu∈Jk

i
{[τiu]

α × [ηiu]
β}, when q ≤ q0

J, otherwise

17: where J ∈ Jk
i is chosen according to the probability:

18:

p =
[τiu]

α × [ηiu]
β

∑
l∈Jk

i
[τil]α × [ηil]β

19: and where i is the current location
20: else
21: choose the closest j ∈ Jk

i

22: Remove j from all local candidate lists
23: /* Local Pheromone Update */
24: After each transition ant k applies the local update rule:
25: τij = (1− ρ)× τij + ρ×∆τ0

26: for k = 1 to total number of cities do
27: if an improved tour is found by ant k then
28: update T+ and L+

29: /* Pheromone Reinforcement */
30: for every edge (i,j) ∈ T+ do
31: Update pheromone trails by applying the rule:
32: ∆τij = 1/L+

33: τij = (1− ρ)× τij + ρ×∆τij

34: for every edge (i,j) ∈ τ do
35: τij = τij × (1− ρ)
36: /* Done */
37: print the shortest tour and its length

52

Algorithm 4 ACS-GRIDWORLD

1: /* Initialization */
2: for every location (i, j) do
3: τij = τ0

4: for k = 1 to total number of ants do
5: Place ant k on a randomly chosen open location
6: /* Main Loop */
7: for t = 1 to tmax do
8: for k = 1 to total number of ants do
9: /*Solution Construction*/

10: Build tour tk by doing the following until a goal location is reached:
11: Choose the next available location, j ∈ Jk

i from the four cardinal directions:
12:

j =

{
argmaxu∈Jk

i
{[τiu]

α × [ηiu]
β}, when q ≤ q0

J, otherwise

13: where J ∈ Jk
i is chosen according to the probability:

14:

p =
[τiu]

α × [ηiu]
β

∑
l∈Jk

i
[τil]α × [ηil]β

15: and where i is the current location
16: Remove j from all local candidate lists

17: /* Local Pheromone Update */
18: After each transition ant k applies the local update rule:
19: τij = (1− ρ)× τij + ρ×∆τ0

20: /* Pheromone Reinforcement */
21: for k = 1 to total number of ants do
22: for every unique location (i,j) ∈ T k do
23: Update pheromone trails by applying the rule:
24: ∆τij = 1/L+

25: τij = (1− ρ)× τij + ρ×∆τij

26: for every edge (i,j) ∈ τ do
27: τij = τij × (1− ρ)
28: /* Done */
29: Print the final pheromone matrix

53

Algorithm 5 Parallel Ant Colony System (Generic)

1: Get Problem to Work On
2: Initialize Ant Starting Location and Pheromone Matrix
3: for Number of Time Steps do
4: for Each Ant in Colony do
5: Construct Solution
6: Calculate Best Solution
7: Reinforce Pheromones
8: if Synchronization Needed then
9: Transmit Request for Synchronization

10: Transmit Information to Share
11: Wait for Response

Algorithm 6 Determining Optimal Hypercube Dimensions

1: for a given pheromone matrix do
2: max = maximum pheromone value in matrix
3: min = minimum pheromone value in matrix
4: hbest = max−min
5: haccuracy = accuracy of classifications for a given size (Algorithm 2)
6: n = number of hypercube sizes to try
7: tmp = hbest

8: while haccuracy 6= 100% do
9: tmp = tmp− hdecrement

10: tmpaccuracy = accuracy of classifier with hypercube size of tmp
11: if tmpaccuracy ≥ haccuracy then
12: hbest = tmp

54

Algorithm 7 Parallel Ant Colony System with Area of Expertise Learning (Generic)

1: /* Worker */
2: Initialize Ant Starting Locations and Pheromone Matrix

3: for Number of Time Steps do
4: for Each Ant in Colony do
5: Construct Solution and Update Visit Tables
6: Update Pheromones
7: if Synchronization Needed then
8: Determine AOE Using Pheromone Matrix and Visit Table
9: Train Parzen Classifier (Algorithm 6)

10: Transmit Pheromone Matrix and Classifier to Master
11: Receive New Pheromone Matrix from Master

12: /* Master */
13: for Each Synchronization from All Workers do
14: Wait for Each Worker to Transmit Pheromones and Classifier
15: for Each Worker do
16: Synchronize Pheromones (Figure 2.12)
17: Return Updated Pheromone Matrix to Worker

55

IV. Results and Analysis

This chapter evaluates the effectiveness of AOE learning in ACO using the parallel

ACS-TSP and ACS-GRIDWORLD algorithms developed in Chapter III. The first

section provides an overview of the experimental setup used with regards to param-

eter settings, benchmarks, and test configurations. This is followed by a discussion

concerning the efficiency of the AOE mechanism in terms of computational time and

classifier accuracy. In the third section, the gridworld problem is focused on exclu-

sively in order to show how the policies generated through the use of AOE learning in

ACS compare to those generated in [1]. With the proof-of-concept of AOE learning

validated for ACO, focus then shifts to the TSP problem domain in order to exam-

ine how the performance of ACS-TSP is affected by the sharing of expert knowledge

between colonies. The chapter then concludes with a closer analysis of ACS-TSP in

order to determine if an effective synchronization strategy exists.

4.1 Experimental Setup

The stochastic nature of ACS poses a number of unique challenges when it comes

to developing an experimental setup that yields meaningful results. As previously

mentioned, ant colony algorithms are extremely sensitive to their parameter settings

and can converge on varying qualities of solutions depending upon the values of α,

β, and q0. Furthermore, without a comprehensive suite of benchmarks, it is difficult

to accurately gauge the performance of the algorithm under various conditions and

problem types. Finally, since no two runs of ACS are exactly the same, an effective test

plan must be developed in order to develop a good understanding of the algorithm’s

behavior in the average case. What follows in this section is a discussion of the various

design choices made with regards to ACS-TSP and ACS-GRIDWORLD in order to

address each of these issues.

Rather than undergo a lengthy and inconclusive search for the optimum pa-

rameter settings, both ACS-TSP and ACS-GRIDWORLD are tuned to the values

defined in [6] unless otherwise noted. Consequently, standard ant colony parameters

56

such as α = 1.0, β = 2.0, and q0 = 0.9, and the rate of pheromone decay (ρ) is set to

0.1. Furthermore, whenever candidate lists are used (as is the case of ACS-TSP), the

size of any single list is limited to one-third of the total number of nodes in a given

problem. These parameter values are not guaranteed to be optimal, but they have

been frequently used in previous studies of ACO with great success [15].

Unfortunately, while the majority of ACS’s parameters have been thoroughly

studied in a single processor environment for the TSP, the novelty of the research

conducted in this thesis necessitates a rethinking of two key areas. First, in the case

of initial pheromone values (τ0), a common strategy is to use an amount equal to the

inverse of the Nearest Neighbor Heuristic [15]. While this approach works in ACS-

TSP, the lack of an equivalent heuristic in gridworld necessitates that τ0 be assigned

an arbitrarily small value such as 0.1 in ACS-GRIDWORLD. Second, in order to

facilitate a fair comparison of performance between single and parallel processor runs,

the total number of ants used in ACS-TSP and ACS-GRIDWORLD, regardless of the

number of processing units, is always equal to the number of nodes or goal locations

within a problem, respectively. Note that this is different from other parallel ACO

implementations in which each additional colony increases the total number of ants

in the network. This restriction, combined with the strict use of the parameters

described above, guarantees that any difference in performance observed through the

use of parallel ACS is the result of AOE learning and not the product of some unfair

advantage.

With the issue of parameters addressed, the next aspect to consider is that

of benchmarks. Instead of relying on randomly generated problem instances whose

quality cannot be guaranteed, both ACS-TSP and ACS-GRIDWORLD are evaluated

using a series of standardized test cases provided by the academic community. For the

TSP, benchmarks (along with their optimum solutions, if known) are obtained from

TSPLIB [26], and are chosen such that the resulting test suite consists of graphs of

various sizes and node configurations ranging from 22 to 442 nodes. In the gridworld

problem domain, however, the entire test suite consists of a single gridworld problem.

57

Figure 4.1: The Imanipour Gridworld Benchmark as Described in [1].

The selected gridworld (depicted in Figure 4.1) is identical to the 20 × 29 landscape

from [1]. Thus, by focusing on the Imanipour gridworld, it is possible to directly

compare ACS-GRIDWORLD’s performance to the results obtained in [1].

The final impediment to creating an effective experimental setup rests in the

design and execution of the experiments themselves. Since ACS-TSP and ACS-

GRIDWORLD rely on randomness in order to generate high quality solutions, it

is impossible to gain a complete understanding of either algorithm’s behavior based

on observations from a single trial. For this reason, both algorithms’ average case

performance is approximated through thirty independent trials of one-thousand time

steps. This facilitates an analysis of ACS-TSP and ACS-GRIDWORLD through the

use of first and second order statistics (assuming a Gaussian distribution). Unfor-

tunately, the need for multiple runs, combined with the constant rerunning of tests

in order to study the impact of parallelism and synchronization schedules on perfor-

mance, makes this approach computationally demanding. To address this issue, both

ACS algorithms were implemented in Java 1.5 in order to take advantage of the lan-

guage’s efficient data structures and increased portability. The resulting software was

58

Table 4.1: Summary of the Core Experimental Configuration Used Throughout this
Chapter.

then run on a variety of platforms ranging from a network of desktops featuring dual

Pentium 4 processors, 2.0 gigabytes of RAM and the Windows XP operating system,

to a cluster computer featuring Pentium 3 processors running Unix. Although this

approach prevents time data from being easily compared across differing hardware

configurations, it is important to remember that the concept of time in ACO is more

concerned with time steps rather than wall clock time [16]; hence, this implementa-

tion is intended to focus on the former rather than the latter. While this setup is not

ideal, its ability to conduct multiple runs of ACS-TSP and ACS-GRIDWORLD in a

relatively short amount of time allows for a more thorough analysis than would be

possible otherwise.

A summary of the experimental setup used in this chapter as described above

is provided in Table 4.1 for the sake of thoroughness. In the following sections, both

ACS-TSP and ACS-GRIDWORLD are studied in an effort to determine the usefulness

of AOE learning within the ACO framework. Yet while the focus of each experiment

may vary from one section to the next, it is important to remember that their core

59

Table 4.2: Parzen Classifier Training Time (100 Window Sizes Considered, Results
in Seconds).

configuration remains the same. This in turn ensures that the findings of this thesis,

as described below, are both credible and accurate.

4.2 Parzen Classifier Efficiency

Before evaluating the effectiveness of AOE learning in either algorithm domain,

it is necessary to consider the impact of this technique in terms of efficiency. As noted

in Chapter II, the crux of the AOE strategy rests in each colony’s use of a Parzen

classifier to evaluate the expertness of its neighbors. Unfortunately, the lack of a

known optimal Parzen window size for the gridworld and TSP domains, combined with

the need for accurate classifications, necessitates that multiple hypercube dimensions

be tested at each synchronization step. In this section, the AOE training process

is examined using the Imanipour gridworld as well as the ulyssess22, att48, eil51,

berlin52, st70 and TSP benchmarks. For each problem, the number of hypercube

dimensions examined at synchronization is capped at 100. Training, then, occurs

after a set number of time steps ranging from 5 to 50 (chosen arbitrarily for this

section) have elapsed. Provided below are the results of these experiments in terms

of both runtime performance and classifier accuracy.

4.2.1 Runtime Performance. Although classifier training is rarely a trivial

task, the results of Table 4.2 serve as a startling reminder of just how time-consuming

60

Table 4.3: Best Parzen Window Sizes (Hypercube Dimensions) as Determined Us-
ing Algorithm 6.

Table 4.4: Hypercube Sizes Used in this Chapter (Based on Averages from Table
4.4).

this process can be. Even by severely restricting the number of window sizes which are

examined and considering only relatively small test cases, determining the dimensions

of an accurate Parzen classifier is still a computationally expensive process, with

training times ranging from as few as four seconds (ulysses22) to nearly eight minutes

(st70) per synchronization session. While these results indicate that the complexity

of training increases exponentially as the size of the problem increases linearly, a

closer look at Table 4.2 also illustrates that training time is relatively unchanged with

respect to each problem. This means that there is no need to take the number of time

steps into consideration when selecting a synchronization schedule.

Fortunately, while the current method of Parzen classifier training is impractical

for all but the smallest test cases, the results of Table 4.4 indicate that this process

can be greatly sped up. According to the results of a 5% (α = 0.05) two-tailed t-test,

there is no statistically significant evidence to suggest that varying the number of time

steps elapsed prior to training has any bearing on the best window size of the classi-

fier. Moreover, while a cursory glance clearly illustrates a disparity in window sizes

between TSP and gridworld benchmarks (brought on by the fact that both problem

61

domains utilize a different value of τ0), closer examination of Table 4.4 reveals that

the optimal hypercube dimensions discovered for each TSP benchmark are statisti-

cally indistinguishable from one another. In light of these findings, it appears that the

importance of Parzen classifier training is overrated. As a result, rather than subject

ACS-TSP and ACS-GRIDWORLD to this lengthy tuning process, a more efficient

design choice is to simply hard-code the classifier using an empirically determined av-

erage window size for each problem domain. For gridworld, this design choice means

that each classifier is initialized with a hypercube width of 1.621. TSP classifiers,

then, are set to the value of 0.00420, which is the average window size across all

benchmarks. Although this assumption does not guarantee an optimum window size,

it does reduce the training time by at least a factor of 100 since there is no longer a

need to constantly assess and compare the accuracy of each classifier after training.

This in turn should give the AOE strategy the performance boost that it needs in

order to remain competitive with other parallel ACO approaches.

4.2.2 Parzen Classifier Accuracy. While runtime speed is important, being

able to correctly assess the expertness of others based solely on pheromone values is a

key aspect of AOE learning in ACO as it directly impacts the quality of information

that is exchanged between colonies during synchronization. Consequently, a thorough

analysis of AOE’s efficiency must also take the accuracy of the Parzen classifier into

account. For the purposes of this section, each of the classifiers described in Tables

4.2 and 4.4 are evaluated using their respective training data as the validation set. A

summary of these results, then, is provided in Table 4.5.

As noted in Chapter II, the Parzen classifier is designed to gauge the expertness

of other colonies based on the notion of expertness of the colony that trained it. Yet

despite having to work with a relatively small training set, the results of Table 4.5

indicate that Parzen classification provides a surprisingly effective means of assessing

the expertness of others. With only a single exception, each of the classifiers shown

in Table 4.5 are typically able to differentiate between expert and nonexpert states

62

Table 4.5: Average Parzen Classifier Accuracy (Expert and Nonexpert States).

Table 4.6: Average Parzen Classifier Accuracy (Expert States).

at least 70% of the time. Furthermore, these results also illustrate that the Parzen

method works best within the TSP problem domain, as the accuracy of the Imanipour

classifier tends to be lower than its TSP counterparts by an average of 10.5%. Most

importantly, the use of a 5% t-test indicates that varying the number of time steps

prior to synchronization does have a statistically significant impact on classifier accu-

racy from within the same problem. This suggests that changing the synchronization

time step can noticeably affect the quality of information that is exchanged between

colonies (and by extension, solution quality since better pheromone trails should lead

to better solutions), which lends credence to the idea that an optimal synchronization

schedule exists.

Unfortunately, while the above results are promising, focusing on total accuracy

only provides a small glimpse of a much larger picture. In Tables 4.6 and 4.7, the

63

Table 4.7: Average Parzen Classifier Accuracy (Nonexpert States).

results of Table 4.5 are broken down in order to show the Parzen classifier’s accuracy

at identifying expert and nonexpert states separately. On their own, these tables

reveal many of the same trends noted above. A comparison of the two, however,

shows that while the Parzen classifier is capable of identifying nonexpert states nearly

90% of the time, its classifications of expertness are sometimes only slightly better

than blind guessing. Also, expert accuracy generally does down as the size of the

problem increases. Given such a wide disparity in accuracy, the results of Table 4.7

can be attributed to the fact that Parzen classification is extremely pessimistic, and

assumes that states do not contain expert information. Yet while this bias allows

for extremely accurate identifications of nonexpertness, its inability to consistently

identify expert states hinders the performance of the classifier as a whole, especially

as the number of time steps (and consequently, the number of expert states) increases;

this trend is clearly visible in Tables 4.5. In fairness, this behavior may prove to be

unintentionally beneficial since it ensures that little if any state information in being

inaccurately classified as expert and shared between colonies. When considering how

much expert information is mistakenly ignored, however, it is clear that there is still

significant room for improvement.

Based on these results, it is clear that there are both benefits and shortcomings

to the use of Parzen classification within the AOE framework. On the one hand, this

approach appears to be adept at identifying nonexpert states. The key to the AOE

64

process, however, is in being able to identify expertness, and Parzen classification falls

short in this regard. Although the accuracies noted above are impressive at times, it is

important to remember that these values represent the upper bound of performance,

since they are generated by evaluating the classifier using the exact same data points

used to train it. Consequently, a decrease in classification accuracy is to be expected

once these data points no longer resemble the training set. The bigger issue, though

is whether or not this decrease is significant enough to hamper the effectiveness of the

AOE strategy in ACO. The following sections shed more light on this matter.

4.3 Impact of ACO with AOE Learning in Gridworld

To demonstrate the effectiveness of information sharing in parallel ACO, the

AOE technique is first considered with regards to the gridworld problem domain. This

section compares how the exchange of expert knowledge in ACO compares to prior

results reported in [1] for the gridworld domain using ACS-GRIDWORLD. Due to

the peculiarities of gridworld, an analysis of ACS-GRIDWORLD’s performance over

multiple runs does not yield meaningful findings since there is no widely accepted way

to calculate the mean or standard deviations of multiple policies. Consequently, this

section provides a typical example of how the sharing of AOEs affects each colony’s

convergence to a final policy.

For the purposes of this demonstration, the AOE learning process is examined

through the use of three colonies working in tandem. Each colony is forced to start

in different zones of the gridworld (as shown in Figure 4.2), although movement

throughout the landscape is unrestricted once an ant has been placed. Through this

approach, each colony is then encouraged to develop its own unique area of expertise.

This section contains a breakdown of the AOE learning process into its basic steps

followed by an examination of the final policies created through synchronization.

4.3.1 Self-Determination of Expertness. As described in Section 2.6, the

first step in the AOE process calls for the self-evaluation of each colony’s expertness.

65

Figure 4.2: Starting Location for Each Colony.

To demonstrate this capability within ACO, each ACS-GRIDWORLD colony is al-

lowed to run to convergence (the point in which the AOE of a colony does not change;

empirically determined to occur after 25 time steps), which is defined as the point

where the colony neither gains nor loses expertness with each time step. A determi-

nation of expertness for each state, then, is made using the median of each colony’s

visit table as a threshold value. Figure 4.3 shows a typical resulting AOE map for all

three colonies when using this classification scheme.

As expected, the assignment of unique starting areas allows each colony to de-

velop a different area of expertise than its neighbors. While there is some overlapping

of AOEs, the layout of higher expertise “levels” (denoted by darker colors) seen in

colonies 2 and 3 illustrates that each colony’s AOE is most focused near its starting

region. Note that while all three colonies possess expert knowledge for more than two-

thirds of the gridworld and learn all three goal locations, Figure 4.3 also reveals that

no colony is able to converge upon an effective policy over the entire landscape. This

is good because it allows all three to benefit from an exchange of expert knowledge.

Although fundamental differences between ACS-GRIDWORLD and Q-learning

prevent a point-by-point comparison, a cursory glance at Figure 4.4 suggests that

the results obtained thus far are generally similar with those reported in [1] from a

66

Figure 4.3: A Typical Example of Areas of Expertise as Determined through Self-
Assessment (After 25 Time Steps)

Figure 4.4: Self-Determination of Expertness as Reported in [1] using Q-Learning.

Figure 4.5: A Typical Example of Areas of Expertise as Determined through Self-
Assessment (After 5 Time Steps).

67

visual standpoint. While there are technically several notable differences between the

two, most can be explained by the fact that the results shown in the latter are not

run to convergence; in fact, by running ACS-GRIDWORLD for only five time steps

(shown in Figure 4.5), the resulting AOE is remarkably similar to those reported in

Figure 4.4. Based on these observations, it is reasonable to assume that the ACS-

GRIDWORLD’s behavior over 5 time steps is comparable to that of the robots used

in [1]. This suggests that the AOE process will yield similar results in both algorithm

domains.

4.3.2 Determining the Expertness of Others. Whereas self-determinations

of AOE are trivial, the assessment of other colonies’ expertness is an inherently more

difficult task [1]. In Figure 4.6, the extracted AOE of the entire gridworld (using

the same data from Figure 4.3) is presented from each colonies’ perspective. Because

colonies do not assess the expertise of others in locations where they already possess

expert knowledge, there are significant portions of the landscape which each colony

ignores (shown in gray). Even so, one can clearly see that the Parzen classifier’s

ability to identify expertness can vary widely. In the case of colonies 2 and 3, Parzen

classification appears to be highly adept at identifying expertness based solely upon

pheromone values. Yet as observed in colony 1, this approach is not full-proof, and

can result in colonies mistakenly believing that there are regions of the gridworld

(denoted in white) where no colonies possess expert information when they actually

do. The above findings are not surprising, since the results of Table 4.6 indicate that

Parzen classifiers are somewhat unreliable at identifying expert states. As the above

data indicates through colonies 2 and 3, though, the technique sometimes works well.

For the purposes of comparison, the extraction of others’ AOEs as reported in [1]

is presented in Figure 4.7. A cursory glance between these results and those presented

in this section show that the two only vaguely resemble one another since the latter

is run to convergence while the former is not. Conceptually, though, both figures

demonstrate the same behavior; the only difference is that the overlapping of AOEs

68

Figure 4.6: Determination of Others’ Expertness from Figure 4.3 using Parzen
Classification.

Figure 4.7: Determination of Others’ Expertness from the Perspective of a Single
Robot as Reported in [1].

69

in the ACS-GRIDWORLD example (caused by ACS’ larger exploration of the search

space) prevents the extraction of AOEs from being appearing as straightforward as it

is in [1]. Thus for all intents and purposes, these results are considered to be similar,

and serve as further proof that the use of AOE learning in ACO is indeed possible.

4.3.3 Sharing Expert Information. The final step of AOE learning calls for

the sharing of expert knowledge between colonies. As can be seen in Figure 4.10,

each colony augments its pheromone tables by incorporating the expert knowledge

contained by others (as determined by the Parzen classifier) for each nonexpert state;

in the event that no expert information is detected for a particular location, an av-

erage of all three colonies’ pheromone values at that cell is used instead. The results

of this synchronization step are immediately noticeable, as each colony in Figure 4.10

contains expert information in over 94% of the landscape, resulting in a gain of at

least 28% for each colony. Moreover, because colonies are required to keep their expert

information, another outcome of the AOE learning process is that each colony pos-

sesses a slightly different combination of expert knowledge/pheromone values. This

outcome is overlooked in [1], but could be important in parallel ACO implementations

since it encourages a more diverse exploration of the search space.

Although pheromone trails only influence the behavior of ants in ACO, these

matrices can also be thought of as representing a colony’s overall decision “policy”

over the search space. In Figure 4.8, the pheromone matrices of colonies 1, 2 and

3, respectively, are shown before and after the synchronization process. In some

cases, such as with colony 2, the resulting pheromone matrix is only slightly aug-

mented by AOE learning. Other times, the difference in pheromones before and after

synchronization is more noticeable, as is the case with colonies 1 and 3. For each

case, however, the use of synchronization appears to be beneficial, as the pheromone

policies created through AOE sharing more closely resemble the optimal policy for

this problem (Figure 4.9, as determined by the Bellman Backup Equation [28]). In

fact, according to Figure 4.11, synchronization improves the quality of each policy

70

Colony 1

Colony 2

Colony 3

Figure 4.8: Pheromone Concentrations of Colonies 1, 2, and 3 Before and After
AOE Learning.

71

Figure 4.9: Optimal Policy for the Imanipour Benchmark as Determined by the
Bellman Backup Equation [28].

Figure 4.10: AOEs of Colonies After Synchronization.

72

Figure 4.11: Comparison of Policies Before and After Synchronization (Lower Dis-
tance is Better).

Table 4.8: Runtime Performance of Parallel vs. Standalone ACS-GRIDWORLD
(After 25 Time Steps).

by 5.97%, on average. Thus, it is clear that the AOE learning process is doing more

good than harm.

4.3.4 Performance. A comprehensive evaluation of AOE’s performance

within ACS-GRIDWORLD must be considered with regards to both computational

time and solution quality. Thus, for the purpose of this section, the parallel ACS-

GRIDWORLD implementation discussed above is compared to the performance of a

single large colony. Both algorithms are run for 30 trials using the same number of

time steps (25) and same number of ants (3). The only difference between the two,

is the fact that the former utilizes AOE learning across multiple colonies while the

latter does not.

73

Figure 4.12: Area of Expertise of a Single ACS-GRIDWORLD Colony (After 25
Time Steps).

In terms of runtime performance, the results of Table 4.8 indicate that the use of

AOE learning is preferable over the use of a single large colony. Theoretically, utiliz-

ing three processing units should allow for a speedup of exactly 3.0 over a standalone

colony, since each can be delegated one-third of the entire workload. In actuality,

though, the additional computational overhead imposed by the AOE process from

network communication delay and classifier training reduces this speedup to approx-

imately 1.93.

Unfortunately, while the use of AOE learning is advantageous in terms of

speedup, the same cannot be said with regards to solution quality. Although an

examination of AOE in Figure 4.12 indicates that ACS-GRIDWORLD develops up

to 30% fewer expert states when run as a single large colony, the resulting pheromone

matrix (Figure 4.13) of this single colony more closely approximates the optimal pol-

icy than any of the matrices produced through AOE learning (Figure 4.14). At first

glance, this discovery discredits the notion of using AOE learning in ACO, as it sug-

gests that the increases in runtime performance afforded by this technique are more

than offset by significant losses in solution quality. Closer analysis, though, reveals

74

Figure 4.13: Pheromone Concentrations of a Single ACS-GRIDWORLD Colony
After 25 Time Steps (Left) Compared to an Optimal Policy (Right).

Figure 4.14: Comparison of Policies Formed through ACO with AOE Learning
versus a Single Large Colony (Lower Distance is Better).

75

Figure 4.15: Combined Pheromone Policy of Three ACS-GRIDWORLD Colonies
Synchronized Just Before Overlapping of AOE Occurs (Left) Compared with Optimal
Policy (Right).

that these findings are the result of a fundamental shortcoming of the AOE strategy,

as discussed next.

As previously mentioned, all of the results reported in this section are generated

by running ACS-GRIDWORLD until convergence. While this approach maximizes

the amount of expert information in which each colony can share, an unexpected

side effect is that it can also cause each colony to learn too much about the land-

scape. As indicated in Figure 4.8, each ACS-GRIDWORLD colony learns the path

to the nearest goal exceptionally well. The problem, though, is that by the time each

colony achieves convergence, it also considers itself expert at the other two goal lo-

cations (Figure 4.3). Thus, while sharing pheromones between colonies should result

in a combined policy similar to the one shown in Figure 4.13, AOE’s self-imposed

restriction of not overwriting expert knowledge prevents each colony from learning

the pheromone ”peaks” at all three goals. In light of these findings, it becomes ap-

parent that effectiveness of AOE learning, regardless of the problem domain, largely

depends upon the time at which synchronization occurs. As demonstrated through

this section, waiting too long can cause colonies to refuse useful expert knowledge.

If synchronization occurs too soon, though, both the quality and quantity of expert

information which can be shared is significantly reduced. In order to demonstrate this

principle, three ACS-GRIDWORLD colonies were allowed to run until their respective

76

AOEs touched each other (determined by combining each’s AOE at the end of every

time step). Synchronizing at that exact time step (which varied for each run but was

found on average to occur at the 7th time step) results in the pheromone policy shown

in Figure 4.15. This pheromone matrix more closely resembles an optimal policy than

any of the other AOE policies created in this section and was created in a third of the

time, thus proving that AOE learning can be highly effective when used properly.

4.3.5 Closing Remarks. Based on these results, the use of AOE learning

in ACO is a mixed bag. On the one hand, sharing expert knowledge does appear to

enhance the quality of policies generated by each participating colony in a manner

similar to that reported in [1]. In order to maximize the effectiveness of this exchange,

however, synchronization must occur within a narrow timeframe where each colony

has enough expert information to share but not enough to become set in its ways.

Nevertheless, the findings obtained in this section serve as proof that the AOE learning

technique can be successfully applied to the ACO framework. As a result, the following

sections focuses on examining the use of this technique when directly applied to a more

traditional ant colony problem domain.

4.4 Impact of ACO with AOE Learning in the TSP

With the use of AOE learning in ACO validated through gridworld, the focus

of this thesis now turns towards the use of ACO combined with AOE learning with

regards to the TSP. Using the parallelized version of ACS-TSP developed in Chapter

III, this section evaluates the effectiveness of AOE learning when solving various

TSPLIB [26] benchmarks using networks of 2 and 5 colonies. Performance is measured

by comparing the solutions generated through this method against both those created

by a single large colony as well as through parallel independent runs, which currently

represent the best known means of using ACO according to [15] and [23], respectively.

Since the effectiveness of AOE learning is reliant upon exchanging large quan-

tities of meaningful information, the issue of when to synchronize is also closely con-

77

Table 4.9: Effects of Single Versus Multiple Time Step Synchronization on the
Ulysses22 Benchmark (Optimal Answer is 75.67).

sidered in this section. Throughout the following experiments, a variety of synchro-

nization schedules ranging from one-time exchanges to swapping after every few time

steps are implemented and analyzed. Due to the results of the previous section, how-

ever, only those schedules which swap at least once before convergence (defined in the

TSP as the point where ants no longer find a better solution) are considered. For the

TSP problems examined, convergence typically occurs no later than after the 200th

time step. The results produced by these varying synchronization schedules are then

compared to one another in the following section in hope that doing so will reveal an

optimal synchronization strategy.

4.4.1 Single Versus Multiple Time Step Synchronization. Because it is only

meant to demonstrate proof-of-concept, the use of AOE learning in ACS-GRIDWORLD

is considered in terms of a one-time exchange of information between colonies. It is

conceivable, however, that a more effective means of utilizing AOE learning is to

share expert information multiple times during a single trial. This section examines

the impact of various synchronization schedules on ACS-TSP which occur at either

a fixed time step or after an interval of time steps. The following experiments utilize

the ulyssess22, att48, and st70 benchmarks, and consist of 30 trials. For multiple

synchronization experiments, colonies swap in multiples of 10, 25, 50, 100 or 200 time

steps. For single synchronization experiments, colonies swap at only the 10th, 25th,

50th, 100th, or 200th time step. A summary of the solutions generated from each

experiment is reported in Tables 4.9, 4.10, and 4.11.

78

Table 4.10: Effects of Single Versus Multiple Time Step Synchronization on the
ATT48 Benchmark (Optimal Answer is 33523.71).

Table 4.11: Effects of Single Versus Multiple Time Step Synchronization on the
ST70 Benchmark (Optimal Answer is 678.59).

In terms of solution quality, an inspection of these tables indicates that there is

no single synchronization schedule that consistently stands out with regards to either

best or average case performance. In fact, it is even difficult to determine a synchro-

nization strategy that generally works best since ulyssess22 benefits the most from a

single synchronization at time step 25 (or several other schedules), st70 profits from

multiple exchanges every 50 or 200 time steps (depending upon whether or not 2 or 5

colonies are being utilized, respectively), and att48 benefits from either synchronizing

just once at the 25th time step with 2 colonies or after every 100 time steps when

using 5. However, the results of a 5% t-test indicates that the differences in solu-

tion quality between single and multiple step synchronization policies are statistically

negligible across all three benchmarks. As a result, keeping the number of colonies

constant, these results suggest that either approach is a valid means of synchronizing

knowledge in the TSP.

79

Although there is no discernable difference in terms of solution quality, there is a

noticeable disparity between single and multiple step synchronization schedules with

regards to runtime performance. As mentioned in Section 4.2.1, synchronization is a

nontrivial process, since training a Parzen classifier and sharing information causes

colonies to expend effort that could be used in exploring/exploiting the search space.

Consequently, synchronization schedules that use a single synchronization step always

run significantly faster than those that that repeatedly share information. In light of

these findings, the motivation for utilizing multiple synchronization steps is severely

reduced since the use of a single synchronization schedule can produce similar results

in a fraction of the time. For this reason, the following sections in this chapter forgo

the use of multiple synchronization steps in favor of a single swap approach.

4.4.2 Performance. Unlike in ACS-GRIDWORLD, where the concept of

AOE learning can easily be expressed and evaluated visually, the complexity of the

TSP prevents a similar visualization from being as informative. As a result, the

performance of parallel ACO with AOE learning in this problem domain is more

effectively examined in terms of solution quality and run times. In Tables 4.12 through

4.16, the effectiveness of ACS-TSP using AOE learning is compared to that of a single

large colony as well as to parallel independent runs [23]. For the purposes of this

section, the number of benchmarks examined is expanded to include the eil51 and

berlin52 TSPLIB problems. Moreover, the synchronization schedules used for each

AOE experiment borrows heavily from the lessons learned in the previous section. As

a result, synchronization occurs only once per episode in order to maximize efficiency,

and the number of time steps before swapping is focused on a narrower range (5, 10,

15, 20, 25, 30, 35, 40, 45, 50); in Tables 4.10, 4.11, and 4.9 synchronizing once between

the 5th and 50th time steps resulted in the discovery of the highest quality solution.

With regards to solution quality, the results of Tables 4.12 through 4.16 pro-

vide several useful insights as to the effectiveness of AOE learning when applied to

ACS-TSP. In terms of best case performance, AOE learning appears to improve the

80

Table 4.12: Comparison of Solution Quality for ACS-TSP using a Single Large
Colony, Parallel Independent Runs, or AOE Learning on the Ulysses22 Benchmark
(Optimal Answer is 75.67).

Table 4.13: Comparison of Solution Quality for ACS-TSP using a Single Large
Colony, Parallel Independent Runs, or AOE Learning on the ATT48 Benchmark (Op-
timal Answer is 33523.71).

Table 4.14: Comparison of Solution Quality for ACS-TSP using a Single Large
Colony, Parallel Independent Runs, or AOE Learning on the Eil51 Benchmark (Op-
timal Answer is 426).

81

Table 4.15: Comparison of Solution Quality for ACS-TSP using a Single Large
Colony, Parallel Independent Runs, or AOE Learning on the Berlin52 Benchmark
(Optimal Answer is 7542)

Table 4.16: Comparison of Solution Quality for ACS-TSP using a Single Large
Colony, Parallel Independent Runs, or AOE Learning on the ST70 Benchmark (Op-
timal Answer is 426)

82

Table 4.17: Runtime Performance of a Single Large Colony, Parallel Independent
Runs, and AOE Learning on the Ulysses22 Benchmark.

performance of ACS-TSP, as the best solution to all five benchmarks are discovered

by ACS-TSP when utilizing this technique. An examination of average case behav-

ior, however, provides a more realistic perspective. Although there are times when

utilizing AOE learning can result in statistically better solutions than those obtained

by a single large colony (for example, Table 4.13 for 5 processors), there are also

instances where the technique actually hampers performance, as seen in both sides of

Table 4.16. Furthermore, using five processors/colonies appears to have a discernible

impact on solution quality over just two in most cases. Problems such as berlin52 and

st70 reverse this trend, though as the average tour length found by five colonies is

noticeably worse in these benchmarks than those generated using just two. Without

a doubt, the most important finding of Tables 4.12 through 4.16 is that the solutions

generated through the use of AOE learning are statistically indistinguishable from

those obtained via parallel independent runs. The importance of this discovery can-

not be overstated, as it indicates that the AOE technique produces tour lengths that

are on part with parallel independent runs - the best known means of parallelizing

ACO according to [23]. Such a result is to be expected, though, since the ACS-TSP

with AOE algorithm used throughout this section is essentially parallel independent

runs combined with a single synchronization step.

83

Table 4.18: Runtime Performance of a Single Large Colony, Parallel Independent
Runs, and AOE Learning on the ATT48 Benchmark.

Table 4.19: Runtime Performance of a Single Large Colony, Parallel Independent
Runs, and AOE Learning on the Eil51 Benchmark.

84

Table 4.20: Runtime Performance of a Single Large Colony, Parallel Independent
Runs, and AOE Learning on the Berlin52 Benchmark.

Table 4.21: Runtime Performance of a Single Large Colony, Parallel Independent
Runs, and AOE Learning on the ST70 Benchmark.

85

While the use of AOE learning in ACS-TSP is validated from the perspective of

solution quality, an analysis of runtime performance is less encouraging. According to

Tables 4.17 through 4.21, the use of multiple small colonies is to the benefit of both

AOE learning and parallel independent runs, as it allows for the same amount of work

to be accomplished in a shorter amount of time. What is interesting, though, is that

this speedup is not directly proportional to the number of colonies which are utilized.

Even in the case of parallel independent runs, which do not require any synchroniza-

tion, the need to communicate even the most basic bookkeeping information between

colonies (i.e., solutions, initial pheromone values, etc.) results in a noticeable runtime

penalty. Consequently, it is not surprising to see that when significant quantities of

data are being exchanged, as is the case of in AOE learning, the resulting performance

hits can be severe. When the number of processors/colonies is limited to just two,

there appears to be little difference between AOE learning and parallel independent

runs. In fact, on the ulysses22 benchmark, the use of AOE learning can actually be

shown to be faster than parallel independent runs on average. Once the number of

processors is increased to five, however, the shortcomings of AOE learning become

evident. Because more colonies equates to more knowledge that requires synchroniza-

tion, the AOE process incurs a significant runtime penalty that constantly increases

with the amount of parallelization use. Note that AOE with five colonies still allows

for a speedup to 1.96 over that of a single large colony (Figure 4.18). Compared to the

4.42 speedup achieved by parallel independent runs on the same problem, however, it

is clear that AOE learning is at a distinct disadvantage.

Although the AOE learning technique shows some promise in the TSP, its slower

runtime performance combined with virtually little change in solution quality means

this technique has little if any appeal. Certainly, it may be possible to increase

runtime speeds by eliminating the master/worker hierarchy (described in Chapter

III) in favor of an approach that requires each colony to be responsible for performing

synchronization for itself. Based on the results obtained thus far, however, the use

86

Table 4.22: Performance of a Single Large Colony, Parallel Independent Runs, and
AOE Learning on the Eil101 Benchmark.

of parallel independent runs is still the preferred means of parallelizing ACO for the

TSP.

4.4.3 Application of AOE to Large TSP Problems. Although the results in

this section are focused on relatively small benchmarks, the conclusions drawn from

them are also applicable to larger problem instances. In order to demonstrate this,

the use of AOE learning on three larger TSPLIB benchmarks (eil101, pr264, pcb442)

is provided in Tables 4.22 through 4.24. As is typical of ACO, the quality of solutions

generated by all three approaches decreases significantly as the size of the problem

increases. However, the relationships in performance between all three techniques

remain largely the same. The results of Tables 4.22 through 4.24 show that the use

of a single large colony produces the highest quality results. When compared to the

runtime performance of this method, however, it is clear that the slight decrease in

87

Table 4.23: Performance of a Single Large Colony, Parallel Independent Runs, and
AOE Learning on the PR264 Benchmark.

88

Table 4.24: Performance of a Single Large Colony, Parallel Independent Runs, and
AOE Learning on the PCB442 Benchmark.

89

solution quality caused by either AOE learning or parallel independent runs is more

than made up for by their respective speedups. Furthermore, while there are times

when the AOE process appears to generate higher quality solutions than parallel

independent runs, the fact that these gains are never more than 0.5% better makes

the additional runtime costs of this method unappealing when compared to the latter,

especially on larger sized TSP instances. Certainly, this examination is not completely

redundant, as it demonstrates that the use of AOE learning has the potential to

improve the performance of parallel ACO. Until an optimal synchronization schedule

is determined, however, the method still loses out to parallel independent runs on the

TSP.

4.5 Determining when to Synchronize

Throughout this chapter, the effectiveness of AOE learning in ACO has been

shown to be highly dependent upon when colonies exchange expert information with

one another. In gridworld, the presence of multiple known goals makes determining

the optimal conditions for synchronization a simple matter of ensuring that colonies

share expert knowledge before their AOEs overlap. With the TSP, however, deter-

mining the best conditions for synchronization is complicated by the fact that 1)

there is only one true goal in the environment, 2) ant colonies rarely if ever reach

this goal on their own, 3) ant colonies do not know if they have achieved convergence

until many time steps afterwards, and 4) every colony has easy access to the same

portions of the search space. As a result, utilizing a gridworld-like synchronization

strategy is infeasible, as it would require examining AOEs over long stretches of time

and applying synchronization retroactively. Using the data obtained from all trials

of ACS-TSP conducted in the previous two sections, a variety of approaches have

been studied in an attempt to isolate trends which may reveal the most effective time

to share expertness in the TSP. This section contains a discussion of each of these

approaches and their results.

90

Fixed Time Step All of the synchronization schedules experimented with in this

chapter are selected based on the assumption that the best time to swap AOEs

occurs after some fixed number of time steps have elapsed. As illustrated in

Tables 4.13 through 4.16, the best solutions discovered with 2 colonies were

found when synchronization occurs at 30 time steps. An analysis of the 5 colony

runs, however, reveals that the optimal time step for synchronization is far more

erratic. Based on these findings, it is assumed that the use of 30 time steps is

useful as a guideline, but not as a definite rule.

Median Value in Visit Table Because AOE learning uses the median of the visit

table as the threshold for expertness, it stands to reason that an optimal time

to synchronize might be once the median reaches a specific value. In all of the

benchmark problems tested, however, the median of the visit table is always

equal to one up to the 50th time step. This is because the sheer number of

edges in a TSP prevents ants from being able to visit each one prior to the 50th

time step; this causes AOE to calculate the median as being one. As a result,

visit table values are not believed to have any bearing on the synchronization

process.

Ratio of Expert to Nonexpert States Since AOE learning places heavy empha-

sis on the concept of expertness, one approach to synchronization is to track the

ratio of expert to nonexpert states. Doing so produces a curve like the one seen

in Figure 4.16. Although it was hoped that the instantaneous slope of this curve

could be used to predict the most opportune time to swap, an examination of

these ratios across all eight benchmarks did not reveal a meaningful pattern.

Pheromone Concentrations Since pheromone values are a direct measure of ex-

pertness, the maximum and minimum pheromone trails within a pheromone

table are tracked at each time step. A problem with this approach, however,

is that the amount of pheromones deposited in ACS-TSP are a function of the

path length, which causes different problems to result in different pheromone

91

Figure 4.16: Ratio of Expert to Nonexpert States for the Berlin52 Benchmark
During the First 50 Time Steps.

ranges. As a result, a direct comparison of pheromone concentrations does not

produce meaningful results.

Number of Time Steps Since Max Pheromone Value has Changed In order

to compensate for varying pheromone concentration ranges between bench-

marks, each colony tracks the number of time steps since the maximum pheromone

value has changed. This approach is based on the idea that the best time to

synchronize is after the maximum pheromone value has reached a plateau. An

examination of the performance of ACS-TSP on the att48 benchmark, however,

reveals that the best time to synchronize occurs while the maximum pheromone

value is steadily increasing. As a result, no correlation between the maximum

pheromone value, the final solution, and the synchronization time step can be

made.

Number of Time Steps Since Last Solution Improvement As demonstrated in

Section 4.3.3, synchronizing after convergence can hurt the effectiveness of the

AOE process. In an attempt to predict convergence and synchronize before it

92

is too late, each colony kept track of the number of time steps that had elapsed

since a higher quality solution had been found. In all of the benchmarks, though,

by the time convergence could be predicted with a high degree of certainty, it was

already long past the optimal time to synchronize. This indicates that waiting

for convergence is not an effective means of determining when to synchronize.

Number of Time Steps Since Last Significant Solution Improvement This fi-

nal approach is similar to the one above, with the only difference being that

convergence is considered once the colony does not make a significant i.e. 5%

improvement for some time. Unfortunately, within the time window examined

(5 to 50 time steps), the ant colony is constantly making significant improve-

ments in its solution. As a result, this strategy was not found to be useful.

Despite the wide breadth of approaches considered, there does not appear to be

a set of conditions which can be used to identify the best time to synchronize ACS-

TSP with absolute precision. Instead, the results of this analysis indicate that while

some features may appear to be indicative of an optimal synchronization schedule,

they do not serve as an indicator of behavior across all instances. In many ways,

the stochastic nature of ACO makes the task of predicting the effectiveness of AOE

learning extremely difficult. For some cases, such as with eil51, the synchronization

time step which produces the best solution also happens to produce the worst. In

other cases, such as berlin52, varying the number of time steps before synchronization

has practically no impact on solution quality. Based on the results of this study, it is

difficult to say for certain whether or not a set of optimal synchronization conditions

can be found. However, this investigation suggest that if these conditions do exist,

they are not as intuitive as one might initially believe.

4.5.1 Closing Remarks. Throughout this chapter, the use of AOE learning

is evaluated as a means of synchronizing the efforts of multiple ant colonies working

in tandem. Although the AOE method is imperfect due to its reliance on Parzen clas-

sification to identify expertness, the approach is found to be effective at augmenting

93

a colony’s pheromone matrix with the expert knowledge of others. Unfortunately, the

impact of AOE learning on solution quality can widely vary. In multi-objective envi-

ronments such as gridworld, the sharing of AOEs between ant colonies can be shown

to allow for the creation of policies that are similar in quality to those generated by

a single large colony, but generated in nearly half the time. In a single objective

environment such as TSP, however, the use of AOE learning is less impressive, as the

technique has no discernable impact on solution quality and results in slower runtime

performance than parallel independent runs. Based on the results from both prob-

lem domains, it is apparent that the impact of AOE on performance largely varies

depending upon when information is exchanged. Yet while an effective synchroniza-

tion schedule can be determined for the gridworld, a set of similar synchronization

conditions for the TSP could not be found. Further study in this area is obviously

required.

94

V. Conclusion

This thesis has explored the application of Area of Expertise (AOE) learning within

parallel Ant Colony Optimization (ACO). Specifically, it provides a means of in-

corporating AOE learning within the ACO framework, and analyzes the resulting

algorithms when used in a multi-objective gridworld environment as well as the trav-

eling salesman problem (TSP). In order to maximize the performance of the AOE

approach, an in-depth study was conducted to identify the most opportune time to

exchange expert knowledge between colonies. The approach was then compared

against the best known means of parallelizing ACO, which as of this writing means

parallel independent runs, as well as forgoing parallelism altogether in favor of a single

large colony.

5.1 Contributions and Achievements

The major accomplishments and achievements of this thesis include the follow-

ing:

• Both the traveling salesman and gridworld problems are discussed, with special

emphasis placed on identifying the practical impediments (i.e. computational

complexity) that make finding high quality solutions in either problem domain

difficult.

• The ACO metaheuristic, an effective and efficient means of solving discrete com-

binatorial optimization problems, is reviewed. Using the ACS-TSP algorithm

[15] as a template, a new ant colony algorithm known as ACS-GRIDWORLD is

created. This algorithm represents the first known application of ACO to the

gridworld environment.

• The major problems associated with parallelizing ACO are examined. A review

of the current literature as provided in Chapter II indicates that while a variety

of approaches have been suggested throughout the years in order to achieve co-

operative learning in ACO, all have resulted in either decreased solution quality,

slower runtime performance, or both.

95

• Area of Expertise learning [1], a novel means of sharing information between

cooperative agents, is reviewed. This technique focuses on individual agents

determining where they possess expert knowledge. Then, through the use of a

Parzen classifier, each agent evaluates the expertness of others and augments

its knowledge base whenever the former contains expert information and the

latter does nota. Although AOE learning has only been applied in robotics, the

principles of the technique are easily transferrable to the ACO metaheuristic.

Consequently, a means for upgrading ACS-TSP and ACS-GRIDWORLD to

include the AOE synchronization mechanism is provided.

• An analysis of the AOE process within parallel ACO yields the following obser-

vations concerning the performance of Parzen classification:

– An imbalance in the accuracies between expert (≈60%) and nonexpert

(≈90%) states indicates that Parzen classification is extremely pessimistic

when determining expertness. This is due to the small number of data

points that are available to train the classifier, as well as the fact that the

majority of a colony’s knowledge base consists of nonexpert states. As a

result, the classifier often mistakes expertness for nonexpertness. Conse-

quently, during the synchronization process, it is possible for an agent to

“miss out” on a piece of expert knowledge because it is mistakenly classified

as nonexpert.

– The optimal Parzen window size does not appear to be heavily influenced

by either the particular problem being solved or the number of time steps

that have elapsed prior to training. Instead, the initial pheromone value

τ0 is the biggest contributor to the classifier’s final dimensions. Since this

value remains constant in ACS-GRIDWORLD and ACS-TSP, respectively,

there is no need to search for a good window size once it has been empiri-

cally determined, thus saving significant time during classifier training.

96

• As proof-of-concept, the AOE learning strategy is first considered with regards

to ACS-GRIDWORLD. Some of the highlights of this investigation include:

– The behavior of AOE within ACO is found to be comparable to that re-

ported in [1] using robots. These results indicate that the AOE technique

can be successfully translated into an ant colony framework.

– Exchanges of expert pheromone information (coinciding with one’s AOE)

between colonies is found to be advantageous. An evaluation of the

pheromone policies created before and after synchronization indicate that

the latter more closely resembles an optimum policy. This shows that

synchronization can be used to improve solution quality while shortening

execution time.

– A comparison of the policies created through AOE learning and by a single

large colony illustrates that the use of the former is not guaranteed to

yield higher performance. If synchronization occurs too soon or too late,

the amount of expert information that is exchanged is too small to be

meaningful, resulting in a policy that is less optimal than one created

through a single large colony.

– The best time to share expert information is right before each colony’s

expertise overlaps one another. This simple synchronization criteria is

only possible in multi-objective environments due to the fact that each

colony can focus on a separate goal.

– In terms of runtime performance, the use of AOE learning is found to

have a significant advantage over a single large colony. Although the

maximum speedup recorded is 1.93, it is expected to increase as the size

of the landscape and number of ants used increases.

• Based on the success of the AOE learning when applied to gridworld, a similar

configuration was applied in the single objective traveling salesman problem,

and tested using the ulysses22, att48, eil51, berlin52, st70, eil101, pr264, and

97

pcb442 benchmarks (provided by TSPLIB). While it was hoped that utilizing

AOE in combination with ACO would lead to improved performance, the results

of this study instead indicated the following:

– In terms of solution quality, synchronizing after every few time steps is

shown to be equivalent to synchronizing only once per episode. This, in

conjunction with the computationally expensive nature of the swapping

process, makes a single swap synchronization schedule the preferred means

of utilizing AOE learning in ACO.

– When compared to parallel independent runs and a single large colony us-

ing the same number of ants, the use of AOE learning does not produce

any significant gains in solution quality. On the contrary, the tours gener-

ated by AOE learning are nearly identical to those generated via parallel

independent runs, and are slightly worse (on larger problems) than those

found by a single large colony.

– With regards to runtime performance, AOE learning is at a disadvantage.

Although a maximum speedup of 1.96 was obtained using AOE when com-

pared to a single large colony, the extra computational time needed for syn-

chronization makes it significantly slower than parallel independent runs,

which achieves a speedup of 4.42 on the same problem. On average, par-

allel independent runs are capable of executing in half the time.

– On TSP benchmarks consisting of more than 100 nodes, the solutions gen-

erated by AOE learning is statistically better than parallel independent

runs. This indicates that the use of the technique can improve solution

quality, although this improvement was never observed to be greater than

0.5%.

– As was the case in gridworld, determining when to synchronize plays a key

role in maximizing the usefulness of the AOE technique. Unfortunately,

the single objective nature of the TSP makes the task of determining this

98

optimal moment difficult. Although a variety of approaches were consid-

ered, none were found to be useful in identifying the precise moment when

synchronizing expert knowledge is most advantageous.

5.2 Future Work

The research conducted in this thesis demonstrates that AOE learning can be

beneficial in either single or multiple objective environments. At the same time

though, it also illustrates that the method is prone to inaccurate classifications of

expertness, slower runtime performance, limited improvements in solution quality, and

synchronization timing issues. In this regard, there is clearly a need for further work

and testing. The main goal of any future research should be focused on improving

the quality of expert information that is shared between colonies, as well as improving

the speed at which this information is shared. The following list provides some ideas

for future work:

• Removal of Parzen classification in favor of a less computationally expensive

process for determining expertness. One possible candidate for this is to simply

use each colony’s visit table threshold.

• Replacement of the master/worker hierarchy in favor of a more decentralized

topology. In this thesis, the master was found to be a performance bottleneck

during the synchronization process. By replacing it with a peer-to-peer network,

the task of synchronization can then be delegated to the colonies themselves.

This should greatly speed up the speed at which colonies are able to share

information with one another.

• Further evaluation of the impact of AOE learning on even larger sized TSP in-

stances. This should determine if the marginal solution improvements observed

in Chapter IV on larger problems is a trend or a one-time occurrence.

• Perform additional experiments solely designed to uncover the optimal synchro-

nization conditions in a single objective environment. Based on this thesis, it

99

is known that pheromone concentrations, visit table values, and solution con-

vergence does not appear to be the sole indicator of when to synchronization.

It may be the case, however, that determining when to synchronize depends on

several conditions.

• Incorporate AOE learning into other ACO systems such as Win or Learn Fast

(WoLF) Ant [7]in order to determine if the technique has any discernable impact.

• Develop a means of “rewinding” an ACO episode such that different synchro-

nization schedules can be tested on the same problem. This allows for the

impact of AOE learning to be precisely measured, instead of trying to approxi-

mate its behavior through multiple trials.

• Create a visualization tool that shows the AOE of each colony in real time.

Such a tool should allow researchers to better determine the optimal conditions

for synchronization in both single and multi-objective environments.

• Finally, future work should include the application of AOE learning in other

problems for which ACO has already been applied. This includes, but is

not limited to the Quadratic Assignment Problem, Multidimensional Knapsack

Problem, Vehicle Routing Problem, and other various scheduling problems.

100

Bibliography

1. Ahmadabadi, Majid Nili, Ahmad Imanipour, Babak N. Araabi, Masoud Asad-
pour, and Roland Siegwart. “Knowledge-based Extraction of Area of Expertise
for Cooperation in Learning”. Proc. of the IEEE/RSJ Conf. on Intelligent Robots
and Systems [IROS]. Beijing, China, Oct. 2006.

2. Applegate, David L., Robert E. Bixby, Vasek Chvatal, and William Cook. The
Traveling Salesman Problem: A Computational Study. Princeton University
Press, 41 William Street, Princeton, New Jersey, USA, 08540-5237, 2007.

3. Arabshahi, Payman, Andrew Gray, I. Kassabalidis, M.A. El-Sharkawi, R.J. Marks
II, A. Das, and S. Narayanan. “Adaptive Routing in Wireless Communi-
cation Networks using Swarm Intelligence”. 9th AIAA Int. Communications
Satellite Systems Conf., 17-20 April 2001, Toulouse, France. 2001. URL
citeseer.ist.psu.edu/arabshahi01adaptive.html.

4. Becker, T.J. “No Accidental Tourist: Solving the Traveling Salesman Problem
Has Been a 16-year Passion for Researcher — Research Horizons Magazine”,
2004. URL http://gtresearchnews.gatech.edu/newsrelease/salesman.htm.
[Online; accessed 02-May-2007].

5. Bentley, Jon Louis. “Experiments on traveling salesman heuristics”. SODA ’90:
Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms,
91–99. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
1990. ISBN 0-89871-251-3.

6. Bonabeau, E., M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, New York, NY, first edition, 1999.

7. Bowling, Michael H. and Manuela M. Veloso. “Multiagent learning using a
variable learning rate”. Artificial Intelligence, 136(2):215–250, 2002. URL
citeseer.ist.psu.edu/bowling02multiagent.html.

8. Bullnheimer, B., G. Kotsis, and C. Strauss. “Paral-
lelization Strategies for the Ant System”, 1997. URL
citeseer.ist.psu.edu/bullnheimer98parallelization.html.

9. Catalano, Maria Stella Fiorenzo and Federico Malucelli. “Parallel randomized
heuristics for the set covering problem”. 113–132, 2001.

10. Cioni, L. “Some Strategies for Parallelizing Ant Systems”, 2005. URL
http://www.di.unipi.it/ lcioni/papers/2005/ArtAnts.pdf.

11. Comellas, F. and J. Ozon. “An ant algorithm for the graph colouring problem”,
1998. URL citeseer.ist.psu.edu/comellas98ant.html.

101

12. Dawande, M., J. Kalagnanam, P. Keskinocak, R. Ravi, and F. S. Salman. “Ap-
proximation Algorithms for the Multiple Knapsack Problem with Assignment
Restrictions”. Combinatorial Optimization, 4(2):171–186, 2000.

13. Delisle, P., M. Krakecki, M. Gravel., and C. Gagne. “Parallel Implementation of
an Ant Colony Optimization Metaheuristic with OpenMP”, 2001.

14. Donati, A., L. Gambardella, N. Casagrande, A. Rizzoli, and R. Montemanni.
“Time Dependent Vehicle Routing Problem with an Ant Colony System”. URL
citeseer.ist.psu.edu/562261.html.

15. Dorigo, Marco and Luca Maria Gambardella. “Ant Colony System: A Co-
operative Learning Approach to the Traveling Salesman Problem”. IEEE
Transactions on Evolutionary Computation, 1(1):53–66, April 1997. URL
citeseer.ist.psu.edu/article/dorigo96ant.html.

16. Dorigo, Marco, Vittorio Maniezzo, and Alberto Colorni. “The Ant System:
Optimization by a colony of cooperating agents”. IEEE Transactions on Sys-
tems, Man, and Cybernetics Part B: Cybernetics, 26(1):29–41, 1996. URL
citeseer.ist.psu.edu/dorigo96ant.html.

17. Ellabib, Issmail, Paul Calamai, and Otman Basir. “Exchange strategies for mul-
tiple Ant Colony System”. Inf. Sci., 177(5):1248–1264, 2007. ISSN 0020-0255.

18. F. Kruger, M. Middendorf, D. Merkle. “Studies on a Parallel Ant System for the
BSP Model”, 1998.

19. Gambardella, Luca Maria and Marco Dorigo. “Ant-Q: A Reinforcement Learn-
ing Approach to the Traveling Salesman Problem”. International Conference on
Machine Learning, 252–260. 1995. URL citeseer.ist.psu.edu/33860.html.

20. Kruger, F., D. Merkle, and M. Middendorf. “Studies on a Parallel Ant System
for the BSP Model”, 1998.

21. Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley
& Sons, Inc., New York, NY, first edition, 1985.

22. López-Ibáñez, M., L Paquete, and T. Stützle. “On the Design of ACO for the
Biobjective Quadratic Assignment Problem”. M. Dorigo, M. Birattari, C. Blum,
L. Gambardella, F. Montada, and T. Stützle (editors), 4th International Work-
shop on Ant Colony Optimization (ANTS 2004), volume 3172 of Lecture Notes in
Computer Science, 214–225. Springer Verlag, 2004. URL papers/ants2004.pdf.
(c©Springer Verlag).

23. Manfrin, Max, Mauro Birattari, Thomas Stutzle, and Marco Dorigo.
“Parallel ACO for the Traveling Salesman Problem”, 2006. URL
http://code.ulb.ac.be/dbfiles/ManBirStuDor2006ants.pdf.

24. Michalewicz, Z. and D. Fogel. How to Solve It: Modern Heuristics. Springer,
Verlag, Berlin, second edition, 2004.

102

25. Middendorf, Martin, Frank Reischle, and Hartmut Schmeck. “In-
formation Exchange in Multi Colony Ant Algorithms”. Lec-
ture Notes in Computer Science, 1800:645+, 2000. URL
citeseer.ist.psu.edu/article/middendorf00information.html.

26. Reinelt, Gerhard. “TSPLIB 95”, 2007. URL
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

27. Richard O. Duda, Peter E. Hart and David G. Stork. Pattern Classification. John
Wiley & Sons, Inc., New York, NY, USA, 2001. ISBN 0-471-05669-3.

28. Russell, S. and P. Norvig. Artifical Intelligence: A Modern Approach. Pearson,
Upper Saddle River, New Jersey, second edition, 2003.

29. St, T. and u Hoos. “MAX MIN Ant System”, 2000. URL
citeseer.ist.psu.edu/312713.html.

30. Stützle, Thomas. “Parallelization Strategies for Ant Colony Optimiza-
tion”. Lecture Notes in Computer Science, 1498:722–??, 1998. URL
citeseer.ist.psu.edu/utzle98parallelization.html.

31. Taillard, E. D. and L. Gambardella. An ant approach for structured quadratic
assignment problems. Technical Report IDSIA-22-97, 22, 1997. URL
citeseer.ist.psu.edu/taillard97ant.html.

32. Talbi, Roux, Fonlupt, and Robillard. “Parallel Ant Colonies for Combinatorial
Optimization Problems”. Feitelson & Rudolph (Eds.), Job Scheduling Strategies
for Parallel Processing: IPPS ’95 Workshop, Springer LNCS 949, volume 11.
1999. URL citeseer.ist.psu.edu/talbi99parallel.html.

33. Tsai, Cheng-Fa, Chun-Wei Tsai, and Ching-Chang Tseng. “A new hybrid heuris-
tic approach for solving large traveling salesman problem”. Inf. Sci. Inf. Comput.
Sci., 166(1-4):67–81, 2004. ISSN 0020-0255.

34. Tschoeke, S., R. Luling, and B. Monien. “Solving the traveling salesman problem
with a distributed branchand -bound algorithm on a 1024 processor network”,
1995. URL citeseer.ist.psu.edu/148117.html.

35. van der Zwaan, S. and C. Marques. “Ant Colony Optimisation for Job Shop
Scheduling”, 1999. URL citeseer.ist.psu.edu/vanderzwaan99ant.html.

103

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

13-09-2007
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

Sept 2006 – Sept 2007
5a. CONTRACT NUMBER

5b. GRANT NUMBER

TITLE AND SUBTITLE

PARALLELIZATION OF ANT COLONY
OPTIMIZATION VIA AREA OF EXPERTISE LEARNING

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

AUTHOR(S)

de Freitas, Adrian, 2nd Lieutenant, USAF
 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/07-15

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Jason Foley, AFRL/MNMF

 306 W. Eglin Blvd, Bldg 432
 Eglin AFB, FL 32542
 (850) 833-0584 jason.foley@eglin.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Ant colony optimization algorithms have long been touted as providing an effective and efficient means of
generating high quality solutions to NP-hard optimization problems. Unfortunately, while the structure of the
algorithm is easy to parallelize, the nature and amount of communication required for parallel execution has meant
that parallel implementations developed suffer from decreased solution quality, slower runtime performance, or both.
This thesis explores a new strategy for ant colony parallelization that involves Area of Expertise (AOE) learning.
The AOE concept is based on the idea that individual agents tend to gain knowledge of different areas of the search
space when left to their own devices. After developing a sense of their own expertness on a portion of the problem
domain, agents share information and incorporate knowledge from other agents without having to experience it
firsthand. This thesis shows that when incorporated within parallel ACO and applied to multi-objective
environments such as a gridworld, the use of AOE learning can be an effective and efficient means of coordinating
the efforts of multiple ant colony agents working in tandem, resulting in increased performance.
15. SUBJECT TERMS
 Ant Colony Optimization, Area of Expertise Learning, Metaheuristic Optimization

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Chris B. Mayer, Maj, USAF (ENG)

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

114

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4542
(Chris.Mayer@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	deFreitasThesis
	Form298

